基于局部纹理描述符和形状尺寸特征的枣果自动分类

Muhammad Ghulam
{"title":"基于局部纹理描述符和形状尺寸特征的枣果自动分类","authors":"Muhammad Ghulam","doi":"10.1109/EMS.2014.63","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 99% accuracy to classify the dates and outperforms previous method of dates classification.","PeriodicalId":350614,"journal":{"name":"European Symposium on Computer Modeling and Simulation","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic Date Fruit Classification by Using Local Texture Descriptors and Shape-Size Features\",\"authors\":\"Muhammad Ghulam\",\"doi\":\"10.1109/EMS.2014.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 99% accuracy to classify the dates and outperforms previous method of dates classification.\",\"PeriodicalId\":350614,\"journal\":{\"name\":\"European Symposium on Computer Modeling and Simulation\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Symposium on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMS.2014.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Symposium on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Date Fruit Classification by Using Local Texture Descriptors and Shape-Size Features
In this paper, we propose a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 99% accuracy to classify the dates and outperforms previous method of dates classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big data in [keynote speaker 2] Feature selection in data-driven systems modelling [keynote speaker 1] Intelligent electrical energy distribution and consumption: SMARTGRID [keynote speaker 3] A Quasi-stationary Approach to the Approximate Solution of a FEA 3D Subject-Specific EMG Model Ontology for Systems Engineering: Model-Based Systems Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1