移动设备视频清晰度评估

E. Baik, A. Pande, Chris Stover, P. Mohapatra
{"title":"移动设备视频清晰度评估","authors":"E. Baik, A. Pande, Chris Stover, P. Mohapatra","doi":"10.1109/INFOCOM.2015.7218361","DOIUrl":null,"url":null,"abstract":"The quality of mobile videos is usually quantified through the Quality of Experience (QoE), which is usually based on network QoS measurements, user engagement, or post-view subjective scores. Such quantifications are not adequate for real-time evaluation. They cannot provide on-line feedback for improvement of visual acuity, which represents the actual viewing experience of the end user. We present a visual acuity framework which makes fast online computations in a mobile device and provide an accurate estimate of mobile video QoE. We identify and study the three main causes that impact visual acuity in mobile videos: spatial distortions, types of buffering and resolution changes. Each of them can be accurately modeled using our framework. We use machine learning techniques to build a prediction model for visual acuity, which depicts more than 78% accuracy. We present an experimental implementation on iPhone 4 and 5s to show that the proposed visual acuity framework is feasible to deploy in mobile devices. Using a data corpus of over 2852 mobile video clips for the experiments, we validate the proposed framework.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Video acuity assessment in mobile devices\",\"authors\":\"E. Baik, A. Pande, Chris Stover, P. Mohapatra\",\"doi\":\"10.1109/INFOCOM.2015.7218361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of mobile videos is usually quantified through the Quality of Experience (QoE), which is usually based on network QoS measurements, user engagement, or post-view subjective scores. Such quantifications are not adequate for real-time evaluation. They cannot provide on-line feedback for improvement of visual acuity, which represents the actual viewing experience of the end user. We present a visual acuity framework which makes fast online computations in a mobile device and provide an accurate estimate of mobile video QoE. We identify and study the three main causes that impact visual acuity in mobile videos: spatial distortions, types of buffering and resolution changes. Each of them can be accurately modeled using our framework. We use machine learning techniques to build a prediction model for visual acuity, which depicts more than 78% accuracy. We present an experimental implementation on iPhone 4 and 5s to show that the proposed visual acuity framework is feasible to deploy in mobile devices. Using a data corpus of over 2852 mobile video clips for the experiments, we validate the proposed framework.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"437 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

移动视频的质量通常通过体验质量(QoE)来量化,这通常基于网络QoS测量、用户参与度或观看后的主观评分。这样的量化不足以进行实时评价。他们不能为视觉敏锐度的提高提供在线反馈,而视觉敏锐度代表了最终用户的实际观看体验。我们提出了一种视觉灵敏度框架,可以在移动设备上进行快速在线计算,并提供准确的移动视频QoE估计。我们确定并研究了影响移动视频视觉敏锐度的三个主要原因:空间扭曲、缓冲类型和分辨率变化。它们中的每一个都可以使用我们的框架精确地建模。我们使用机器学习技术建立了一个视觉敏锐度的预测模型,其准确率超过78%。我们提出了在iPhone 4和5s上的实验实现,以表明所提出的视觉灵敏度框架在移动设备上部署是可行的。使用超过2852个移动视频片段的数据语料库进行实验,我们验证了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video acuity assessment in mobile devices
The quality of mobile videos is usually quantified through the Quality of Experience (QoE), which is usually based on network QoS measurements, user engagement, or post-view subjective scores. Such quantifications are not adequate for real-time evaluation. They cannot provide on-line feedback for improvement of visual acuity, which represents the actual viewing experience of the end user. We present a visual acuity framework which makes fast online computations in a mobile device and provide an accurate estimate of mobile video QoE. We identify and study the three main causes that impact visual acuity in mobile videos: spatial distortions, types of buffering and resolution changes. Each of them can be accurately modeled using our framework. We use machine learning techniques to build a prediction model for visual acuity, which depicts more than 78% accuracy. We present an experimental implementation on iPhone 4 and 5s to show that the proposed visual acuity framework is feasible to deploy in mobile devices. Using a data corpus of over 2852 mobile video clips for the experiments, we validate the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ambient rendezvous: Energy-efficient neighbor discovery via acoustic sensing A-DCF: Design and implementation of delay and queue length based wireless MAC Original SYN: Finding machines hidden behind firewalls Supporting WiFi and LTE co-existence MadeCR: Correlation-based malware detection for cognitive radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1