复指数信号的模型阶数确定:fft初始化ML算法的性能

C. Ying, L. Potter, R. Moses
{"title":"复指数信号的模型阶数确定:fft初始化ML算法的性能","authors":"C. Ying, L. Potter, R. Moses","doi":"10.1109/SSAP.1994.572429","DOIUrl":null,"url":null,"abstract":"We present an algorithm for model order determination and simultaneous maximum likelihood parameter estimation for complex exponential signal modeling. The algorithm exploits initial nonparametric (i.e., FFT) frequency location estimates and Cram&-Rru, Bound (CRB) resolution limits to significantly reduce the search space for the correct model order and parameter estimates. The algorithm initially overestimates the model order. After iterative minimization to obtain maximum likelihood (ML) parameter estimates for that order, a post-processing step eliminates the extraneous sinusoidal modes using CFU3 resolution limits and statistical detection tests. Because the algorithm searches on only a limited set of model orders and parameter regions, it is computationally tractable even for large data lengths and model orders. In this paper we analyze the performance of the algorithm and compare with other existing approaches.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On Model Order Determination For Complex Exponential Signals: Performance Of An FFT-initialized ML Algorithm\",\"authors\":\"C. Ying, L. Potter, R. Moses\",\"doi\":\"10.1109/SSAP.1994.572429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for model order determination and simultaneous maximum likelihood parameter estimation for complex exponential signal modeling. The algorithm exploits initial nonparametric (i.e., FFT) frequency location estimates and Cram&-Rru, Bound (CRB) resolution limits to significantly reduce the search space for the correct model order and parameter estimates. The algorithm initially overestimates the model order. After iterative minimization to obtain maximum likelihood (ML) parameter estimates for that order, a post-processing step eliminates the extraneous sinusoidal modes using CFU3 resolution limits and statistical detection tests. Because the algorithm searches on only a limited set of model orders and parameter regions, it is computationally tractable even for large data lengths and model orders. In this paper we analyze the performance of the algorithm and compare with other existing approaches.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种复指数信号建模中模型阶数确定和最大似然参数同时估计的算法。该算法利用初始非参数(即FFT)频率位置估计和cram&rru, Bound (CRB)分辨率限制来显著减少正确模型顺序和参数估计的搜索空间。该算法最初高估了模型阶数。在迭代最小化以获得该顺序的最大似然(ML)参数估计之后,后处理步骤使用CFU3分辨率限制和统计检测测试消除了无关的正弦模式。由于该算法只搜索有限的模型阶数和参数区域,因此即使对于大数据长度和大模型阶数,它在计算上也是可处理的。本文分析了该算法的性能,并与其他现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Model Order Determination For Complex Exponential Signals: Performance Of An FFT-initialized ML Algorithm
We present an algorithm for model order determination and simultaneous maximum likelihood parameter estimation for complex exponential signal modeling. The algorithm exploits initial nonparametric (i.e., FFT) frequency location estimates and Cram&-Rru, Bound (CRB) resolution limits to significantly reduce the search space for the correct model order and parameter estimates. The algorithm initially overestimates the model order. After iterative minimization to obtain maximum likelihood (ML) parameter estimates for that order, a post-processing step eliminates the extraneous sinusoidal modes using CFU3 resolution limits and statistical detection tests. Because the algorithm searches on only a limited set of model orders and parameter regions, it is computationally tractable even for large data lengths and model orders. In this paper we analyze the performance of the algorithm and compare with other existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1