基于SIMD架构的多层感知器映射

S. Vitabile, A. Gentile, G. B. Dammone, F. Sorbello
{"title":"基于SIMD架构的多层感知器映射","authors":"S. Vitabile, A. Gentile, G. B. Dammone, F. Sorbello","doi":"10.1109/NNSP.2002.1030078","DOIUrl":null,"url":null,"abstract":"An automatic road sign recognition system, A(RS)/sup 2/, is aimed at the detection and recognition of one or more road signs from real-world color images. The authors have proposed an A(RS)/sup 2/ able to detect and extract sign regions from real world scenes on the basis of their color and shape features. Classification is then performed on extracted candidate regions using multi-layer perceptron neural networks. Although system performances are good in terms of both sign detection and classification rates, the entire process requires a large computational time, so real-time applications are not allowed. We present the implementation of the neural layer on the Georgia Institute of Technology SIMD (single instruction, multiple data) pixel processor. Experimental trials supporting the feasibility of real-time processing on this platform are also reported.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multi-layer perceptron mapping on a SIMD architecture\",\"authors\":\"S. Vitabile, A. Gentile, G. B. Dammone, F. Sorbello\",\"doi\":\"10.1109/NNSP.2002.1030078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic road sign recognition system, A(RS)/sup 2/, is aimed at the detection and recognition of one or more road signs from real-world color images. The authors have proposed an A(RS)/sup 2/ able to detect and extract sign regions from real world scenes on the basis of their color and shape features. Classification is then performed on extracted candidate regions using multi-layer perceptron neural networks. Although system performances are good in terms of both sign detection and classification rates, the entire process requires a large computational time, so real-time applications are not allowed. We present the implementation of the neural layer on the Georgia Institute of Technology SIMD (single instruction, multiple data) pixel processor. Experimental trials supporting the feasibility of real-time processing on this platform are also reported.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

一个自动道路标志识别系统,A(RS)/sup 2/,旨在从现实世界的彩色图像中检测和识别一个或多个道路标志。作者提出了一种基于颜色和形状特征从真实场景中检测和提取符号区域的A(RS)/sup /。然后使用多层感知器神经网络对提取的候选区域进行分类。虽然系统的性能在标识检测和分类率方面都很好,但整个过程需要大量的计算时间,因此不允许实时应用。我们提出了神经层在乔治亚理工学院SIMD(单指令,多数据)像素处理器上的实现。实验证明了该平台实时处理的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-layer perceptron mapping on a SIMD architecture
An automatic road sign recognition system, A(RS)/sup 2/, is aimed at the detection and recognition of one or more road signs from real-world color images. The authors have proposed an A(RS)/sup 2/ able to detect and extract sign regions from real world scenes on the basis of their color and shape features. Classification is then performed on extracted candidate regions using multi-layer perceptron neural networks. Although system performances are good in terms of both sign detection and classification rates, the entire process requires a large computational time, so real-time applications are not allowed. We present the implementation of the neural layer on the Georgia Institute of Technology SIMD (single instruction, multiple data) pixel processor. Experimental trials supporting the feasibility of real-time processing on this platform are also reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1