基于格式塔的轮廓权值改进了cnn的场景分类

Morteza Rezanejad, Gabriel Downs, J. Wilder, Dirk B. Walther, A. Jepson, Sven J. Dickinson, Kaleem Siddiqi
{"title":"基于格式塔的轮廓权值改进了cnn的场景分类","authors":"Morteza Rezanejad, Gabriel Downs, J. Wilder, Dirk B. Walther, A. Jepson, Sven J. Dickinson, Kaleem Siddiqi","doi":"10.32470/ccn.2019.1079-0","DOIUrl":null,"url":null,"abstract":"Humans can accurately recognize natural scenes from line drawings, consisting solely of contour-based shape cues. Deep learning strategies for this complex task, however, have thus far been applied directly to photographs, exploiting all the cues available in colour images at the pixel level. Here we report the results of fine tuning off-the-shelf pre-trained Convolutional Neural Networks (CNNs) to perform scene classification given only contour information as input. To do so we exploit the Iverson-Zucker logical/linear framework to obtain line drawings from popular scene categorization databases, including an artist’s scene database and MIT67. We demonstrate a high level of performance despite the absence of colour, texture and shading information. We also show that the inclusion of medial-axis based contour salience weights leads to a further boost, adding useful information that does not appear to be exploited when CNNs are trained to use contours alone.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gestalt-based Contour Weights Improve Scene Categorization by CNNs\",\"authors\":\"Morteza Rezanejad, Gabriel Downs, J. Wilder, Dirk B. Walther, A. Jepson, Sven J. Dickinson, Kaleem Siddiqi\",\"doi\":\"10.32470/ccn.2019.1079-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans can accurately recognize natural scenes from line drawings, consisting solely of contour-based shape cues. Deep learning strategies for this complex task, however, have thus far been applied directly to photographs, exploiting all the cues available in colour images at the pixel level. Here we report the results of fine tuning off-the-shelf pre-trained Convolutional Neural Networks (CNNs) to perform scene classification given only contour information as input. To do so we exploit the Iverson-Zucker logical/linear framework to obtain line drawings from popular scene categorization databases, including an artist’s scene database and MIT67. We demonstrate a high level of performance despite the absence of colour, texture and shading information. We also show that the inclusion of medial-axis based contour salience weights leads to a further boost, adding useful information that does not appear to be exploited when CNNs are trained to use contours alone.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1079-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1079-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人类可以准确地从线条图中识别自然场景,仅由基于轮廓的形状线索组成。然而,到目前为止,这项复杂任务的深度学习策略已经直接应用于照片,利用像素级彩色图像中所有可用的线索。在这里,我们报告了对现成的预训练卷积神经网络(cnn)进行微调的结果,该网络仅以轮廓信息作为输入来执行场景分类。为此,我们利用艾弗森-朱克逻辑/线性框架从流行的场景分类数据库(包括艺术家的场景数据库和MIT67)中获取线条图。我们展示了高水平的性能,尽管缺乏颜色,纹理和阴影信息。我们还表明,包含基于中轴的轮廓显著性权重会导致进一步的提升,增加有用的信息,当cnn被训练成单独使用轮廓时,这些信息似乎不会被利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gestalt-based Contour Weights Improve Scene Categorization by CNNs
Humans can accurately recognize natural scenes from line drawings, consisting solely of contour-based shape cues. Deep learning strategies for this complex task, however, have thus far been applied directly to photographs, exploiting all the cues available in colour images at the pixel level. Here we report the results of fine tuning off-the-shelf pre-trained Convolutional Neural Networks (CNNs) to perform scene classification given only contour information as input. To do so we exploit the Iverson-Zucker logical/linear framework to obtain line drawings from popular scene categorization databases, including an artist’s scene database and MIT67. We demonstrate a high level of performance despite the absence of colour, texture and shading information. We also show that the inclusion of medial-axis based contour salience weights leads to a further boost, adding useful information that does not appear to be exploited when CNNs are trained to use contours alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1