基于参数深度误差校正的结构光RGB-D相机的再标定

Peng-Yuan Kao, S. Shih, Y. Hung, Aye Mon Tun
{"title":"基于参数深度误差校正的结构光RGB-D相机的再标定","authors":"Peng-Yuan Kao, S. Shih, Y. Hung, Aye Mon Tun","doi":"10.1109/MIPR51284.2021.00024","DOIUrl":null,"url":null,"abstract":"Structured-light RGB-D cameras have been widely used in various applications. However, due to the deformation of internal camera parts, their depth estimation accuracy degrades with time. While it is easy to calibrate the camera parameters, updating the calibrated parameters to the camera firmware is difficult. Therefore, existing methods compensate for the depth measurements with different error correction functions. At present, as there are no simple and accurate parametric error correction methods, non-parametric calibration methods must be used when accurate depth measurements are required. The main drawback of such nonparametric approaches is that they require a large number of calibration images to calibrate a large error correction lookup tables. In this paper, we propose a simple parametric depth error correction model based on Taylor-series approximation of depth measurement equations. Experimental results show that the proposed method outperforms other parametric approaches and achieves results comparable to the state-of-the-art nonparametric method although the proposed method uses only nine parameters.","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recalibration of Structured-Light RGB-D Cameras with Parametric Depth Error Correction\",\"authors\":\"Peng-Yuan Kao, S. Shih, Y. Hung, Aye Mon Tun\",\"doi\":\"10.1109/MIPR51284.2021.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured-light RGB-D cameras have been widely used in various applications. However, due to the deformation of internal camera parts, their depth estimation accuracy degrades with time. While it is easy to calibrate the camera parameters, updating the calibrated parameters to the camera firmware is difficult. Therefore, existing methods compensate for the depth measurements with different error correction functions. At present, as there are no simple and accurate parametric error correction methods, non-parametric calibration methods must be used when accurate depth measurements are required. The main drawback of such nonparametric approaches is that they require a large number of calibration images to calibrate a large error correction lookup tables. In this paper, we propose a simple parametric depth error correction model based on Taylor-series approximation of depth measurement equations. Experimental results show that the proposed method outperforms other parametric approaches and achieves results comparable to the state-of-the-art nonparametric method although the proposed method uses only nine parameters.\",\"PeriodicalId\":139543,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR51284.2021.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构光RGB-D相机已广泛应用于各种场合。然而,由于相机内部零件的变形,其深度估计精度随着时间的推移而降低。虽然校准相机参数很容易,但将校准后的参数更新到相机固件却很困难。因此,现有的深度测量方法采用不同的误差校正函数进行补偿。目前,由于没有简单准确的参数误差校正方法,当需要精确的深度测量时,必须采用非参数校准方法。这种非参数方法的主要缺点是它们需要大量的校准图像来校准大型误差校正查找表。本文提出了一种基于深度测量方程泰勒级数近似的简单参数深度误差校正模型。实验结果表明,尽管该方法仅使用了9个参数,但其性能优于其他参数方法,并取得了与最先进的非参数方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recalibration of Structured-Light RGB-D Cameras with Parametric Depth Error Correction
Structured-light RGB-D cameras have been widely used in various applications. However, due to the deformation of internal camera parts, their depth estimation accuracy degrades with time. While it is easy to calibrate the camera parameters, updating the calibrated parameters to the camera firmware is difficult. Therefore, existing methods compensate for the depth measurements with different error correction functions. At present, as there are no simple and accurate parametric error correction methods, non-parametric calibration methods must be used when accurate depth measurements are required. The main drawback of such nonparametric approaches is that they require a large number of calibration images to calibrate a large error correction lookup tables. In this paper, we propose a simple parametric depth error correction model based on Taylor-series approximation of depth measurement equations. Experimental results show that the proposed method outperforms other parametric approaches and achieves results comparable to the state-of-the-art nonparametric method although the proposed method uses only nine parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XM2A: Multi-Scale Multi-Head Attention with Cross-Talk for Multi-Variate Time Series Analysis Demo Paper: Ad Hoc Search On Statistical Data Based On Categorization And Metadata Augmentation An Introduction to the JPEG Fake Media Initiative Augmented Tai-Chi Chuan Practice Tool with Pose Evaluation Exploring the Spatial-Visual Locality of Geo-tagged Urban Street Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1