A. Lochbihler, S. Reza Sefidgar, D. Basin, U. Maurer
{"title":"使用CryptHOL形式化构造密码学","authors":"A. Lochbihler, S. Reza Sefidgar, D. Basin, U. Maurer","doi":"10.1109/CSF.2019.00018","DOIUrl":null,"url":null,"abstract":"Computer-aided cryptography increases the rigour of cryptographic proofs by mechanizing their verification. Existing tools focus mainly on game-based proofs, and efforts to formalize composable frameworks such as Universal Composability have met with limited success. In this paper, we formalize an instance of Constructive Cryptography, a generic theory allowing for clean, composable cryptographic security statements. Namely, we extend CryptHOL, a framework for game-based proofs, with an abstract model of Random Systems and provide proof rules for their equality and composition. We formalize security as a special kind of system construction in which a complex system is built from simpler ones. As a simple case study, we formalize the construction of an information-theoretically secure channel from a key, a random function, and an insecure channel.","PeriodicalId":249093,"journal":{"name":"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Formalizing Constructive Cryptography using CryptHOL\",\"authors\":\"A. Lochbihler, S. Reza Sefidgar, D. Basin, U. Maurer\",\"doi\":\"10.1109/CSF.2019.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-aided cryptography increases the rigour of cryptographic proofs by mechanizing their verification. Existing tools focus mainly on game-based proofs, and efforts to formalize composable frameworks such as Universal Composability have met with limited success. In this paper, we formalize an instance of Constructive Cryptography, a generic theory allowing for clean, composable cryptographic security statements. Namely, we extend CryptHOL, a framework for game-based proofs, with an abstract model of Random Systems and provide proof rules for their equality and composition. We formalize security as a special kind of system construction in which a complex system is built from simpler ones. As a simple case study, we formalize the construction of an information-theoretically secure channel from a key, a random function, and an insecure channel.\",\"PeriodicalId\":249093,\"journal\":{\"name\":\"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2019.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2019.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formalizing Constructive Cryptography using CryptHOL
Computer-aided cryptography increases the rigour of cryptographic proofs by mechanizing their verification. Existing tools focus mainly on game-based proofs, and efforts to formalize composable frameworks such as Universal Composability have met with limited success. In this paper, we formalize an instance of Constructive Cryptography, a generic theory allowing for clean, composable cryptographic security statements. Namely, we extend CryptHOL, a framework for game-based proofs, with an abstract model of Random Systems and provide proof rules for their equality and composition. We formalize security as a special kind of system construction in which a complex system is built from simpler ones. As a simple case study, we formalize the construction of an information-theoretically secure channel from a key, a random function, and an insecure channel.