{"title":"一个可扩展的FFT体系结构家族和用于实时通信的1024点基数-2 FFT实现","authors":"A. Suleiman, H. Saleh, A. Hussein, D. Akopian","doi":"10.1109/ICCD.2008.4751880","DOIUrl":null,"url":null,"abstract":"The paper presents a family of architectures for FFT implementation based on the decomposition of the perfect shuffle permutation, which can be designed with variable number of processing elements. This provides designers with a trade-off choice of speed vs. complexity (cost and area.). A detailed case study is provided on the implementation of 1024-point FFT with 2 processing elements using 45 nm process technology, including area, timing, power and place-and-route results.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A family of scalable FFT architectures and an implementation of 1024-point radix-2 FFT for real-time communications\",\"authors\":\"A. Suleiman, H. Saleh, A. Hussein, D. Akopian\",\"doi\":\"10.1109/ICCD.2008.4751880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a family of architectures for FFT implementation based on the decomposition of the perfect shuffle permutation, which can be designed with variable number of processing elements. This provides designers with a trade-off choice of speed vs. complexity (cost and area.). A detailed case study is provided on the implementation of 1024-point FFT with 2 processing elements using 45 nm process technology, including area, timing, power and place-and-route results.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A family of scalable FFT architectures and an implementation of 1024-point radix-2 FFT for real-time communications
The paper presents a family of architectures for FFT implementation based on the decomposition of the perfect shuffle permutation, which can be designed with variable number of processing elements. This provides designers with a trade-off choice of speed vs. complexity (cost and area.). A detailed case study is provided on the implementation of 1024-point FFT with 2 processing elements using 45 nm process technology, including area, timing, power and place-and-route results.