在《雷神之锤2》中,没有人类监督的反向传播视觉控制

M. Parker, B. D. Bryant
{"title":"在《雷神之锤2》中,没有人类监督的反向传播视觉控制","authors":"M. Parker, B. D. Bryant","doi":"10.1109/CIG.2009.5286462","DOIUrl":null,"url":null,"abstract":"Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Backpropagation without human supervision for visual control in Quake II\",\"authors\":\"M. Parker, B. D. Bryant\",\"doi\":\"10.1109/CIG.2009.5286462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在拉马克进化过程中使用反向传播和神经进化来训练Quake II环境中代理的神经网络视觉控制器。在以前的工作中,我们手工编码了一个非视觉控制器来监督反向传播,但是手工编码只能用于已知解的问题。在这项研究中,智能体的问题是在一个视觉复杂的房间里攻击一个移动的敌人,房间里有一个大的中心柱子。因为我们不知道问题的解决方案,所以我们无法手工编写监督控制器;相反,我们进化了一个非视觉神经网络作为视觉控制器的监督器。这种设置使控制器比那些通过神经进化学习的控制器学习得更快,具有更强的适应性——只能在相同的时间内解决相同的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Backpropagation without human supervision for visual control in Quake II
Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1