{"title":"在《雷神之锤2》中,没有人类监督的反向传播视觉控制","authors":"M. Parker, B. D. Bryant","doi":"10.1109/CIG.2009.5286462","DOIUrl":null,"url":null,"abstract":"Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Backpropagation without human supervision for visual control in Quake II\",\"authors\":\"M. Parker, B. D. Bryant\",\"doi\":\"10.1109/CIG.2009.5286462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backpropagation without human supervision for visual control in Quake II
Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.