木薯块的渗透脱水:动力学分析与优化

T. R. Bezerra Pessoa, A. G. Barbosa de Lima, P. C. Martins, V. Pereira, A. Silva do Carmo, E. D. da Silva
{"title":"木薯块的渗透脱水:动力学分析与优化","authors":"T. R. Bezerra Pessoa, A. G. Barbosa de Lima, P. C. Martins, V. Pereira, A. Silva do Carmo, E. D. da Silva","doi":"10.4028/www.scientific.net/DF.25.99","DOIUrl":null,"url":null,"abstract":"The present work had the objective of studying the osmotic dehydration process of cassava cubes (ManihotesculentaCrantz.) in ternary solutions containing water, sucrose, and sodium chloride. The osmotic dehydration process was studied by using a 24 factorial planning with central points at different conditions of temperature (19-63°C), solute concentration (23-67% w/w), operating time (70-190 min.) and NaCl concentration (0-20% w/w). The process optimization was verified through the performance ratio of minimum solids gain, in conjunction with the maximum moisture loss and reduction of water activity of the material. From the analysis, the optimum condition for osmotic dehydration of cassava cubes was temperature52°C, concentration of the osmotic solution 56%solute,10% NaCl concentration,160 minutes of immersion time and 180 rpm . The study of osmotic dehydration kinetics in the optimized condition showed that the moisture loss reached equilibrium in 180 minutes and the solids gain in 30 minutes. The model of Azuara and contributors was fitted to experimental data of moisture lost and total solids gain, in the optimal condition and good agreement were obtained. From this comparison, the average effective diffusivity coefficients of moisture (1.99x10-8m2/s) and total solids (2.77x10-8m2/s) were estimated.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Osmotic Dehydration of Cassava Cubes: Kinetic Analysis and Optimization\",\"authors\":\"T. R. Bezerra Pessoa, A. G. Barbosa de Lima, P. C. Martins, V. Pereira, A. Silva do Carmo, E. D. da Silva\",\"doi\":\"10.4028/www.scientific.net/DF.25.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work had the objective of studying the osmotic dehydration process of cassava cubes (ManihotesculentaCrantz.) in ternary solutions containing water, sucrose, and sodium chloride. The osmotic dehydration process was studied by using a 24 factorial planning with central points at different conditions of temperature (19-63°C), solute concentration (23-67% w/w), operating time (70-190 min.) and NaCl concentration (0-20% w/w). The process optimization was verified through the performance ratio of minimum solids gain, in conjunction with the maximum moisture loss and reduction of water activity of the material. From the analysis, the optimum condition for osmotic dehydration of cassava cubes was temperature52°C, concentration of the osmotic solution 56%solute,10% NaCl concentration,160 minutes of immersion time and 180 rpm . The study of osmotic dehydration kinetics in the optimized condition showed that the moisture loss reached equilibrium in 180 minutes and the solids gain in 30 minutes. The model of Azuara and contributors was fitted to experimental data of moisture lost and total solids gain, in the optimal condition and good agreement were obtained. From this comparison, the average effective diffusivity coefficients of moisture (1.99x10-8m2/s) and total solids (2.77x10-8m2/s) were estimated.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.25.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.25.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是研究木薯块(ManihotesculentaCrantz.)在水、蔗糖和氯化钠三元溶液中的渗透脱水过程。在温度(19 ~ 63℃)、溶质浓度(23 ~ 67% w/w)、操作时间(70 ~ 190 min)和NaCl浓度(0 ~ 20% w/w)不同条件下,采用24因子规划法研究渗透脱水过程。通过最小固体增益的性能比,结合最大水分损失和材料水活度的降低,验证了工艺优化。经分析,木薯块的最佳渗透脱水条件为:温度52℃,渗透液浓度56%,NaCl浓度10%,浸泡时间160 min,转速180 rpm。在优化条件下的渗透脱水动力学研究表明,在180分钟内水分损失达到平衡,在30分钟内固体增加。在最优条件下,Azuara和贡献者的模型拟合了水分损失和总固体增加的实验数据,得到了较好的一致性。通过比较,得到了水分的平均有效扩散系数(1.99x10-8m2/s)和总固体的平均有效扩散系数(2.77x10-8m2/s)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osmotic Dehydration of Cassava Cubes: Kinetic Analysis and Optimization
The present work had the objective of studying the osmotic dehydration process of cassava cubes (ManihotesculentaCrantz.) in ternary solutions containing water, sucrose, and sodium chloride. The osmotic dehydration process was studied by using a 24 factorial planning with central points at different conditions of temperature (19-63°C), solute concentration (23-67% w/w), operating time (70-190 min.) and NaCl concentration (0-20% w/w). The process optimization was verified through the performance ratio of minimum solids gain, in conjunction with the maximum moisture loss and reduction of water activity of the material. From the analysis, the optimum condition for osmotic dehydration of cassava cubes was temperature52°C, concentration of the osmotic solution 56%solute,10% NaCl concentration,160 minutes of immersion time and 180 rpm . The study of osmotic dehydration kinetics in the optimized condition showed that the moisture loss reached equilibrium in 180 minutes and the solids gain in 30 minutes. The model of Azuara and contributors was fitted to experimental data of moisture lost and total solids gain, in the optimal condition and good agreement were obtained. From this comparison, the average effective diffusivity coefficients of moisture (1.99x10-8m2/s) and total solids (2.77x10-8m2/s) were estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetics and Thermodynamics of Fe-X (X= Al, Cr, Mn, Ti, B, and C) Melts under High Pressure Fundamental Core Effects in Transition Metal High-Entropy Alloys: “High-Entropy” and “Sluggish Diffusion” Effects Novel Interdiffusion Analysis in Multicomponent Alloys - Part 1: Application to Ternary Alloys Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds History and People of Solid-State Diffusion – An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1