{"title":"机器学习辅助下的长铅强降水事件预测","authors":"Yahui Di","doi":"10.1109/ICDMW.2015.218","DOIUrl":null,"url":null,"abstract":"Long-lead prediction of heavy precipitation events has a significant impact since it can provide an early warning of disasters, like a flood. However, the performance of existed prediction models has been constrained by the high dimensional space and non-linear relationship among variables. In this study, we study the prediction problem from the prospective of machine learning. In our machine-learning framework for forecasting heavy precipitation events, we use global hydro-meteorological variables with spatial and temporal influences as features, and the target weather events that last several days have been formulated as weather clusters. Our study has three phases: 1) identify weather clusters in different sizes, 2) handle the imbalance problem within the data, 3) select the most-relevant features through the large feature space. We plan to evaluate our methods with several real world data sets for predicting the heavy precipitation events.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of Long-Lead Heavy Precipitation Events Aided by Machine Learning\",\"authors\":\"Yahui Di\",\"doi\":\"10.1109/ICDMW.2015.218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-lead prediction of heavy precipitation events has a significant impact since it can provide an early warning of disasters, like a flood. However, the performance of existed prediction models has been constrained by the high dimensional space and non-linear relationship among variables. In this study, we study the prediction problem from the prospective of machine learning. In our machine-learning framework for forecasting heavy precipitation events, we use global hydro-meteorological variables with spatial and temporal influences as features, and the target weather events that last several days have been formulated as weather clusters. Our study has three phases: 1) identify weather clusters in different sizes, 2) handle the imbalance problem within the data, 3) select the most-relevant features through the large feature space. We plan to evaluate our methods with several real world data sets for predicting the heavy precipitation events.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Long-Lead Heavy Precipitation Events Aided by Machine Learning
Long-lead prediction of heavy precipitation events has a significant impact since it can provide an early warning of disasters, like a flood. However, the performance of existed prediction models has been constrained by the high dimensional space and non-linear relationship among variables. In this study, we study the prediction problem from the prospective of machine learning. In our machine-learning framework for forecasting heavy precipitation events, we use global hydro-meteorological variables with spatial and temporal influences as features, and the target weather events that last several days have been formulated as weather clusters. Our study has three phases: 1) identify weather clusters in different sizes, 2) handle the imbalance problem within the data, 3) select the most-relevant features through the large feature space. We plan to evaluate our methods with several real world data sets for predicting the heavy precipitation events.