基于档案的差分进化求解全局轨迹优化问题

V. Stanovov, S. Akhmedova, E. Semenkin
{"title":"基于档案的差分进化求解全局轨迹优化问题","authors":"V. Stanovov, S. Akhmedova, E. Semenkin","doi":"10.1109/INFOTECH.2018.8510715","DOIUrl":null,"url":null,"abstract":"The paper describes application of differential evolution with modified mutation strategy to the global trajectory optimization problems. The problems are provided by the European Space Agency and represent trajectories of several well-known spacecraft, namely, Cassini, Rosetta and Messenger. Using archive based differential evolution, global best solutions were found for these problems, and the best known solution was found for the Cassini mission.","PeriodicalId":142221,"journal":{"name":"2018 International Conference on Information Technologies (InfoTech)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Global Trajectory Optimization Problem with Archive-Based Differential Evolution\",\"authors\":\"V. Stanovov, S. Akhmedova, E. Semenkin\",\"doi\":\"10.1109/INFOTECH.2018.8510715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes application of differential evolution with modified mutation strategy to the global trajectory optimization problems. The problems are provided by the European Space Agency and represent trajectories of several well-known spacecraft, namely, Cassini, Rosetta and Messenger. Using archive based differential evolution, global best solutions were found for these problems, and the best known solution was found for the Cassini mission.\",\"PeriodicalId\":142221,\"journal\":{\"name\":\"2018 International Conference on Information Technologies (InfoTech)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information Technologies (InfoTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTECH.2018.8510715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Technologies (InfoTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTECH.2018.8510715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了基于改进突变策略的差分进化方法在全局轨迹优化问题中的应用。这些问题是由欧洲航天局提供的,代表了几个著名航天器的轨迹,即卡西尼号、罗塞塔号和信使号。利用基于存档的差分进化,找到了这些问题的全局最佳解决方案,其中最著名的解决方案是为卡西尼号任务找到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving the Global Trajectory Optimization Problem with Archive-Based Differential Evolution
The paper describes application of differential evolution with modified mutation strategy to the global trajectory optimization problems. The problems are provided by the European Space Agency and represent trajectories of several well-known spacecraft, namely, Cassini, Rosetta and Messenger. Using archive based differential evolution, global best solutions were found for these problems, and the best known solution was found for the Cassini mission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One Model For Implementation GDPR Based On ISO Standards InfoTech 2018 Breaker Page Application of Machine Learning Techniques for Hate Speech Detection in Mobile Applications InfoTech 2018 Index Proposal for Economic Analysis of Cloud Computing in the Technical Wholesale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1