一种用于代码克隆检测的树嵌入方法

Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, Yuanfang Cai
{"title":"一种用于代码克隆检测的树嵌入方法","authors":"Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, Yuanfang Cai","doi":"10.1109/ICSME.2019.00025","DOIUrl":null,"url":null,"abstract":"Clone detection techniques have been explored for decades. Recently, deep learning techniques has been adopted to improve the code representation capability, and improve the state-of-the-art in code clone detection. These approaches usually require a transformation from AST to binary tree to incorporate syntactical information, which introduces overheads. Moreover, these approaches conduct term-embedding, which requires large training datasets. In this paper, we introduce a tree embedding technique to conduct clone detection. Our approach first conducts tree embedding to obtain a node vector for each intermediate node in the AST, which captures the structure information of ASTs. Then we compose a tree vector from its involving node vectors using a lightweight method. Lastly Euclidean distances between tree vectors are measured to determine code clones. We implement our approach in a tool called TECCD and conduct an evaluation using the BigCloneBench (BCB) and 7 other large scale Java projects. The results show that our approach achieves good accuracy and recall and outperforms existing approaches.","PeriodicalId":106748,"journal":{"name":"2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"TECCD: A Tree Embedding Approach for Code Clone Detection\",\"authors\":\"Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, Yuanfang Cai\",\"doi\":\"10.1109/ICSME.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clone detection techniques have been explored for decades. Recently, deep learning techniques has been adopted to improve the code representation capability, and improve the state-of-the-art in code clone detection. These approaches usually require a transformation from AST to binary tree to incorporate syntactical information, which introduces overheads. Moreover, these approaches conduct term-embedding, which requires large training datasets. In this paper, we introduce a tree embedding technique to conduct clone detection. Our approach first conducts tree embedding to obtain a node vector for each intermediate node in the AST, which captures the structure information of ASTs. Then we compose a tree vector from its involving node vectors using a lightweight method. Lastly Euclidean distances between tree vectors are measured to determine code clones. We implement our approach in a tool called TECCD and conduct an evaluation using the BigCloneBench (BCB) and 7 other large scale Java projects. The results show that our approach achieves good accuracy and recall and outperforms existing approaches.\",\"PeriodicalId\":106748,\"journal\":{\"name\":\"2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

克隆检测技术已经探索了几十年。近年来,深度学习技术被用于提高代码表示能力,提高代码克隆检测的水平。这些方法通常需要从AST转换到二叉树,以合并语法信息,这会带来开销。此外,这些方法进行术语嵌入,这需要大量的训练数据集。本文介绍了一种树嵌入技术来进行克隆检测。我们的方法首先进行树嵌入,获取AST中每个中间节点的节点向量,获取AST的结构信息。然后,我们用一种轻量级的方法将其涉及的节点向量组合成一个树向量。最后,测量树向量之间的欧氏距离来确定代码克隆。我们在一个名为TECCD的工具中实现了我们的方法,并使用BigCloneBench (BCB)和其他7个大型Java项目进行了评估。结果表明,该方法具有较好的准确率和查全率,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TECCD: A Tree Embedding Approach for Code Clone Detection
Clone detection techniques have been explored for decades. Recently, deep learning techniques has been adopted to improve the code representation capability, and improve the state-of-the-art in code clone detection. These approaches usually require a transformation from AST to binary tree to incorporate syntactical information, which introduces overheads. Moreover, these approaches conduct term-embedding, which requires large training datasets. In this paper, we introduce a tree embedding technique to conduct clone detection. Our approach first conducts tree embedding to obtain a node vector for each intermediate node in the AST, which captures the structure information of ASTs. Then we compose a tree vector from its involving node vectors using a lightweight method. Lastly Euclidean distances between tree vectors are measured to determine code clones. We implement our approach in a tool called TECCD and conduct an evaluation using the BigCloneBench (BCB) and 7 other large scale Java projects. The results show that our approach achieves good accuracy and recall and outperforms existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Same App, Different Countries: A Preliminary User Reviews Study on Most Downloaded iOS Apps Towards Better Understanding Developer Perception of Refactoring Decomposing God Classes at Siemens Self-Admitted Technical Debt Removal and Refactoring Actions: Co-Occurrence or More? A Validation Method of Self-Adaptive Strategy Based on POMDP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1