基于非线性刚度和阻尼的海上浮式风力机模型振动控制动态减振器优化

Pierre-Olivier Mattei, R. Côte
{"title":"基于非线性刚度和阻尼的海上浮式风力机模型振动控制动态减振器优化","authors":"Pierre-Olivier Mattei, R. Côte","doi":"10.46298/jtcam.10123","DOIUrl":null,"url":null,"abstract":"Passive vibration mitigation of offshore wind turbines using nonlinear absorbers or nonlinear energy sinks has started to receive attention in the literature. In most cases, little attention has been paid to the possibility of detached resonances that occur when the nonlinear energy sink is attached to the linear system describing the wind turbine. Sea motions that alter the initial conditions of the floating offshore wind turbine may cause the nonlinear energy sink to operate at one or more detached resonances, completely negating its ability to control turbine vibration. In this paper, we are interested in optimizing the parameters of a nonlinear energy sink with nonlinear stiffness and nonlinear viscous damping for vibration control of a toy model (e.g., a linear mass-spring-damper system) of a floating offshore wind turbine over its entire operating range. The mechanism of cancellation of the detached resonance is studied analytically under 1:1 resonance. It is shown that the nonlinear energy sink with properly tuned nonlinear viscous damping allows the complete elimination of undesired regimes and completely restores the absorber's ability to strongly limit the vibration of a floating offshore wind turbine over its entire forcing range. The results obtained over a wide range of parameters suggest that both the optimal nonlinear energy sink parameters (linear and nonlinear stiffness and nonlinear damping) and the damping of floating offshore wind turbine vibration depend on simple power laws of nonlinear energy sink mass and linear damping.","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model\",\"authors\":\"Pierre-Olivier Mattei, R. Côte\",\"doi\":\"10.46298/jtcam.10123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive vibration mitigation of offshore wind turbines using nonlinear absorbers or nonlinear energy sinks has started to receive attention in the literature. In most cases, little attention has been paid to the possibility of detached resonances that occur when the nonlinear energy sink is attached to the linear system describing the wind turbine. Sea motions that alter the initial conditions of the floating offshore wind turbine may cause the nonlinear energy sink to operate at one or more detached resonances, completely negating its ability to control turbine vibration. In this paper, we are interested in optimizing the parameters of a nonlinear energy sink with nonlinear stiffness and nonlinear viscous damping for vibration control of a toy model (e.g., a linear mass-spring-damper system) of a floating offshore wind turbine over its entire operating range. The mechanism of cancellation of the detached resonance is studied analytically under 1:1 resonance. It is shown that the nonlinear energy sink with properly tuned nonlinear viscous damping allows the complete elimination of undesired regimes and completely restores the absorber's ability to strongly limit the vibration of a floating offshore wind turbine over its entire forcing range. The results obtained over a wide range of parameters suggest that both the optimal nonlinear energy sink parameters (linear and nonlinear stiffness and nonlinear damping) and the damping of floating offshore wind turbine vibration depend on simple power laws of nonlinear energy sink mass and linear damping.\",\"PeriodicalId\":115014,\"journal\":{\"name\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jtcam.10123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jtcam.10123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用非线性吸振器或非线性能量汇的海上风力发电机被动减振已经开始受到文献的关注。在大多数情况下,很少注意到当非线性能量汇附加到描述风力涡轮机的线性系统时发生分离共振的可能性。海面运动改变了浮式海上风力发电机的初始条件,可能导致非线性能量阱在一个或多个分离共振下运行,完全丧失了控制风力发电机振动的能力。在本文中,我们感兴趣的是优化具有非线性刚度和非线性粘性阻尼的非线性能量池的参数,用于浮动海上风力涡轮机的玩具模型(例如线性质量-弹簧-阻尼系统)在其整个运行范围内的振动控制。分析了在1:1共振条件下分离共振的消除机理。研究表明,适当调整非线性粘性阻尼的非线性能量汇可以完全消除不期望的状态,并完全恢复吸收器在整个强迫范围内强烈限制浮式海上风力发电机振动的能力。在较宽的参数范围内得到的结果表明,最优的非线性能量汇参数(线性、非线性刚度和非线性阻尼)和浮式海上风电机组的振动阻尼取决于非线性能量汇质量和线性阻尼的简单幂律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model
Passive vibration mitigation of offshore wind turbines using nonlinear absorbers or nonlinear energy sinks has started to receive attention in the literature. In most cases, little attention has been paid to the possibility of detached resonances that occur when the nonlinear energy sink is attached to the linear system describing the wind turbine. Sea motions that alter the initial conditions of the floating offshore wind turbine may cause the nonlinear energy sink to operate at one or more detached resonances, completely negating its ability to control turbine vibration. In this paper, we are interested in optimizing the parameters of a nonlinear energy sink with nonlinear stiffness and nonlinear viscous damping for vibration control of a toy model (e.g., a linear mass-spring-damper system) of a floating offshore wind turbine over its entire operating range. The mechanism of cancellation of the detached resonance is studied analytically under 1:1 resonance. It is shown that the nonlinear energy sink with properly tuned nonlinear viscous damping allows the complete elimination of undesired regimes and completely restores the absorber's ability to strongly limit the vibration of a floating offshore wind turbine over its entire forcing range. The results obtained over a wide range of parameters suggest that both the optimal nonlinear energy sink parameters (linear and nonlinear stiffness and nonlinear damping) and the damping of floating offshore wind turbine vibration depend on simple power laws of nonlinear energy sink mass and linear damping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack branching at low tip speeds: spilling the T The average conformation tensor of inter-atomic bonds as an alternative state variable to the strain tensor: definition and first application ś the case of nanoelasticity Reduced order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model Plasticity and ductility of an anisotropic recrystallized AA2198 Al-Cu-Li alloy in T3 and T8 conditions during proportional and non-proportional loading paths: simulations and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1