{"title":"基于图像风格转移和领域对抗学习的军用车辆目标检测算法","authors":"Yubeibei Zhou, Jiulu Gong, Weijian Lu, Naiwei Gu, Kuiqi Chong, Zepeng Wang","doi":"10.1109/ICUS55513.2022.9987190","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of object detection based on deep learning for military vehicles., an object detection algorithm based on image style transfer and domain adversarial learning is proposed. Aiming at the problem of the small number of military vehicle images., a military vehicle image dataset is constructed by using games., miniature models and spider technology. However., due to the visual difference between these images., the accuracy of the trained detection model is poor when it is directly used to detect the actual collected images. CycleGAN is used for image style transfer to obtain images with a similar style to military vehicle images at the data level. Domain adversarial learning is used to optimize the one-stage object detection algorithm to make the network learn domain invariant features and reduce the domain discrepancy at the feature level. The proposed algorithm is implemented with YOLOv5s as an example. The test results show that the proposed algorithm improves the average precision (AP) by 5.7% without increasing the amount of inference computation., compared with the YOLOv5s algorithm.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Object Detection Algorithm for Military Vehicles Based on Image Style Transfer and Domain Adversarial Learning\",\"authors\":\"Yubeibei Zhou, Jiulu Gong, Weijian Lu, Naiwei Gu, Kuiqi Chong, Zepeng Wang\",\"doi\":\"10.1109/ICUS55513.2022.9987190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the accuracy of object detection based on deep learning for military vehicles., an object detection algorithm based on image style transfer and domain adversarial learning is proposed. Aiming at the problem of the small number of military vehicle images., a military vehicle image dataset is constructed by using games., miniature models and spider technology. However., due to the visual difference between these images., the accuracy of the trained detection model is poor when it is directly used to detect the actual collected images. CycleGAN is used for image style transfer to obtain images with a similar style to military vehicle images at the data level. Domain adversarial learning is used to optimize the one-stage object detection algorithm to make the network learn domain invariant features and reduce the domain discrepancy at the feature level. The proposed algorithm is implemented with YOLOv5s as an example. The test results show that the proposed algorithm improves the average precision (AP) by 5.7% without increasing the amount of inference computation., compared with the YOLOv5s algorithm.\",\"PeriodicalId\":345773,\"journal\":{\"name\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS55513.2022.9987190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9987190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Object Detection Algorithm for Military Vehicles Based on Image Style Transfer and Domain Adversarial Learning
In order to improve the accuracy of object detection based on deep learning for military vehicles., an object detection algorithm based on image style transfer and domain adversarial learning is proposed. Aiming at the problem of the small number of military vehicle images., a military vehicle image dataset is constructed by using games., miniature models and spider technology. However., due to the visual difference between these images., the accuracy of the trained detection model is poor when it is directly used to detect the actual collected images. CycleGAN is used for image style transfer to obtain images with a similar style to military vehicle images at the data level. Domain adversarial learning is used to optimize the one-stage object detection algorithm to make the network learn domain invariant features and reduce the domain discrepancy at the feature level. The proposed algorithm is implemented with YOLOv5s as an example. The test results show that the proposed algorithm improves the average precision (AP) by 5.7% without increasing the amount of inference computation., compared with the YOLOv5s algorithm.