基于动态模态分解的射流重建与分析

M. Yaman, Gamze Yüksel
{"title":"基于动态模态分解的射流重建与分析","authors":"M. Yaman, Gamze Yüksel","doi":"10.22531/muglajsci.1268109","DOIUrl":null,"url":null,"abstract":"In this study, the behavior of Turbulent Jet flow was investigated using Dynamic Mode Decomposition, which is a data-driven, dimension reduction method. Jet flow, which is an important and popular research topic in Fluid Dynamics and engineering applications, was considered as the fluid flow. A Large Eddy Simulation (LES) was performed using the openFOAM software to model the Jet flow. 180 snapshots were generated with the simulation to create a Jet Flow dataset of approximately 150 gigabytes. Firstly, the dynamic modes of the jet flow were extracted from this dataset to reveal the characteristic features of the flow. Then, state estimation for reconstruction of the flow were made. This significantly reduced the CPU and RAM requirement for processing data set and saved lots of disk space for storage. Performance measurements were made for the reconstructed images obtained as a result of the analyses. Two metrics were used for the measurements, namely Root Mean Square Error and Structural Similarity Index.","PeriodicalId":149663,"journal":{"name":"Mugla Journal of Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION\",\"authors\":\"M. Yaman, Gamze Yüksel\",\"doi\":\"10.22531/muglajsci.1268109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the behavior of Turbulent Jet flow was investigated using Dynamic Mode Decomposition, which is a data-driven, dimension reduction method. Jet flow, which is an important and popular research topic in Fluid Dynamics and engineering applications, was considered as the fluid flow. A Large Eddy Simulation (LES) was performed using the openFOAM software to model the Jet flow. 180 snapshots were generated with the simulation to create a Jet Flow dataset of approximately 150 gigabytes. Firstly, the dynamic modes of the jet flow were extracted from this dataset to reveal the characteristic features of the flow. Then, state estimation for reconstruction of the flow were made. This significantly reduced the CPU and RAM requirement for processing data set and saved lots of disk space for storage. Performance measurements were made for the reconstructed images obtained as a result of the analyses. Two metrics were used for the measurements, namely Root Mean Square Error and Structural Similarity Index.\",\"PeriodicalId\":149663,\"journal\":{\"name\":\"Mugla Journal of Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mugla Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22531/muglajsci.1268109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mugla Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22531/muglajsci.1268109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,采用数据驱动的降维方法——动态模态分解(Dynamic Mode Decomposition)对湍流射流的行为进行了研究。射流是流体动力学和工程应用中一个重要而热门的研究课题。利用openFOAM软件对射流进行了大涡模拟(LES)。模拟生成了180个快照,以创建大约150gb的Jet Flow数据集。首先,从数据集中提取射流的动态模态,揭示射流的特征特征;然后,对流的重构进行状态估计。这大大减少了处理数据集的CPU和RAM需求,并节省了大量的磁盘空间用于存储。性能测量进行了重建图像作为分析的结果。测量采用两个指标,即均方根误差和结构相似指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION
In this study, the behavior of Turbulent Jet flow was investigated using Dynamic Mode Decomposition, which is a data-driven, dimension reduction method. Jet flow, which is an important and popular research topic in Fluid Dynamics and engineering applications, was considered as the fluid flow. A Large Eddy Simulation (LES) was performed using the openFOAM software to model the Jet flow. 180 snapshots were generated with the simulation to create a Jet Flow dataset of approximately 150 gigabytes. Firstly, the dynamic modes of the jet flow were extracted from this dataset to reveal the characteristic features of the flow. Then, state estimation for reconstruction of the flow were made. This significantly reduced the CPU and RAM requirement for processing data set and saved lots of disk space for storage. Performance measurements were made for the reconstructed images obtained as a result of the analyses. Two metrics were used for the measurements, namely Root Mean Square Error and Structural Similarity Index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GENETIC DISTANCE REVEALS SYNONYMY AND NEW FISH SPECIES IN BALIKESİR STREAMS, TÜRKİYE GÜÇ TRANSFORMATÖRLERİNDE MİNERAL YAĞLARA ALTERNATİF DOĞAL ESTERLERİN UYGULAMALARI STRUCTURAL CHARACTERISTICS OF KIRAZLI DISTRICT, ÇANAKKALE, TÜRKİYE A PRACTICAL ESTIMATION OF THE REQUIRED SAMPLE SIZE IN FMRI STUDIES THE EVOLUTION OF SMART CONTRACT PLATFORMS: A LOOK AT CURRENT TRENDS AND FUTURE DIRECTIONS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1