枯竭碳酸盐岩气藏CO2吞吐提高采收率预测模型的建立

Edo Pratama, M. Ismail, S. Ridha
{"title":"枯竭碳酸盐岩气藏CO2吞吐提高采收率预测模型的建立","authors":"Edo Pratama, M. Ismail, S. Ridha","doi":"10.3997/2214-4609.201801559","DOIUrl":null,"url":null,"abstract":"Injecting CO2 with huff-n-puff process is becoming an efficient technique to overcome some productivity damage and enhanced gas recovery in depleted gas reservoirs. Several numerical simulations are required to estimate the gas recovery factor obtained from CO2 huff-n-puff injection. However, numerical simulations are very expensive and time-consuming processes.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Predictive Model for Enhanced Gas Recovery by CO2 Huff-n-Puff in Depleted Carbonate Gas Reservoirs\",\"authors\":\"Edo Pratama, M. Ismail, S. Ridha\",\"doi\":\"10.3997/2214-4609.201801559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Injecting CO2 with huff-n-puff process is becoming an efficient technique to overcome some productivity damage and enhanced gas recovery in depleted gas reservoirs. Several numerical simulations are required to estimate the gas recovery factor obtained from CO2 huff-n-puff injection. However, numerical simulations are very expensive and time-consuming processes.\",\"PeriodicalId\":325587,\"journal\":{\"name\":\"80th EAGE Conference and Exhibition 2018\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"80th EAGE Conference and Exhibition 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201801559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201801559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在枯竭气藏中,利用吞吐法注入二氧化碳已成为克服产能损害和提高采收率的有效技术。需要进行多次数值模拟来估计CO2吞吐注入获得的采收率。然而,数值模拟是非常昂贵和耗时的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Predictive Model for Enhanced Gas Recovery by CO2 Huff-n-Puff in Depleted Carbonate Gas Reservoirs
Injecting CO2 with huff-n-puff process is becoming an efficient technique to overcome some productivity damage and enhanced gas recovery in depleted gas reservoirs. Several numerical simulations are required to estimate the gas recovery factor obtained from CO2 huff-n-puff injection. However, numerical simulations are very expensive and time-consuming processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate Constraints Time-Depth Conversion Method Based On Velocity Tomography and Application in Bohai K Oilfield Petroleum Exploration Prospect of the Area Longkou 7-6, Bohai Bay Basin, Offshore China Structure Preserving Regularization for Multitrace Sparse Deconvolution Private Equity Funding the Future of the North Sea? – Siccar Point Energy Case Study Dynamics and Evolution of Growth Faults - Implications on Stratigraphic Geometries and Facies Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1