有目的的跟踪

R. Baxter, Michael J. V. Leach, N. Robertson
{"title":"有目的的跟踪","authors":"R. Baxter, Michael J. V. Leach, N. Robertson","doi":"10.1109/SSPD.2014.6943323","DOIUrl":null,"url":null,"abstract":"This paper presents the novel theory for performing behaviour-based tracking using intentional priors. Motivated by our ultimate goal of anomaly detection, our approach is rooted in building better models of target behaviour. Our novel extension of the Kalman filter combines motion information with an intentional prior. We apply our `Intentional Tracker' to a pedestrian surveillance and tracking problem, using head pose as the intentional prior. We perform a statistical analysis of pedestrian head pose behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using intentional priors our algorithm outperform a standard Kalman filter across a range of target trajectories.","PeriodicalId":133530,"journal":{"name":"2014 Sensor Signal Processing for Defence (SSPD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tracking with intent\",\"authors\":\"R. Baxter, Michael J. V. Leach, N. Robertson\",\"doi\":\"10.1109/SSPD.2014.6943323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the novel theory for performing behaviour-based tracking using intentional priors. Motivated by our ultimate goal of anomaly detection, our approach is rooted in building better models of target behaviour. Our novel extension of the Kalman filter combines motion information with an intentional prior. We apply our `Intentional Tracker' to a pedestrian surveillance and tracking problem, using head pose as the intentional prior. We perform a statistical analysis of pedestrian head pose behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using intentional priors our algorithm outperform a standard Kalman filter across a range of target trajectories.\",\"PeriodicalId\":133530,\"journal\":{\"name\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2014.6943323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2014.6943323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了使用意向先验执行基于行为的跟踪的新理论。我们的最终目标是异常检测,我们的方法植根于建立更好的目标行为模型。我们对卡尔曼滤波器的新扩展将运动信息与有意先验相结合。我们将我们的“故意跟踪器”应用于行人监视和跟踪问题,使用头部姿势作为故意先验。我们对行人的头部姿势行为进行了统计分析,并在一组模拟和真实的行人观察中展示了跟踪性能。我们表明,通过使用意向先验,我们的算法在一系列目标轨迹上优于标准卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking with intent
This paper presents the novel theory for performing behaviour-based tracking using intentional priors. Motivated by our ultimate goal of anomaly detection, our approach is rooted in building better models of target behaviour. Our novel extension of the Kalman filter combines motion information with an intentional prior. We apply our `Intentional Tracker' to a pedestrian surveillance and tracking problem, using head pose as the intentional prior. We perform a statistical analysis of pedestrian head pose behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using intentional priors our algorithm outperform a standard Kalman filter across a range of target trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A sparse regularized model for Raman spectral analysis OFDM-based distributed estimation for rich scattering environments Constant envelope fractional fourier transform based waveform libraries for MIMO radar Nonlinear spectral unmixing of hyperspectral images using residual component analysis Reducing false alarms in automated target recognition using local sea-floor characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1