三元混合混凝土的微观结构性能

G. Ramesh
{"title":"三元混合混凝土的微观结构性能","authors":"G. Ramesh","doi":"10.35940/IJSE.B1312.111221","DOIUrl":null,"url":null,"abstract":"The sum of CO2 that has been released into the atmosphere is roughly equal to the amount of cement produced. Cement manufacturing now consumes many natural resources and cement substitute materials in the analysis of Micro Structural Properties of Ternary Blended Concrete. The mixed proportion in this analysis is made of M30 Concrete. The cement is substituted with a mixture of two materials in amounts ranging from 10% to 50%. For the mix of materials, Fly Ash is kept constant. The specimen is a 150mmx150mmx150mm cube, and the concrete is cast in a 150mmx300mm cylinder. The cast specimens are held for 28 days to cure. Compressive and split tensile strength tests are used to achieve the results. The combination at 10%, at 20%, at 20%, and 20% produced better strength results in all proportions from 10% to 50%. Besides, scanning electron microscopy techniques were used to understand better phase changes and the formation of microstructures to maturing the combination of materials at various percentages. SEM was used to evaluate the microstructure of the concrete for five different varieties, which helps with solid growth. With the highest compressive strength gained among all the mixes from 10% to 50% with combinations for M30 grade of concrete at 28 days, significant innovative information on particle shape and microstructure was observed. Via SEM study, a good correlation of this Microscopical quantitative knowledge and material properties is also presented.","PeriodicalId":356159,"journal":{"name":"Indian Journal of Structure Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro Structural Properties of Ternary Blended Concrete\",\"authors\":\"G. Ramesh\",\"doi\":\"10.35940/IJSE.B1312.111221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sum of CO2 that has been released into the atmosphere is roughly equal to the amount of cement produced. Cement manufacturing now consumes many natural resources and cement substitute materials in the analysis of Micro Structural Properties of Ternary Blended Concrete. The mixed proportion in this analysis is made of M30 Concrete. The cement is substituted with a mixture of two materials in amounts ranging from 10% to 50%. For the mix of materials, Fly Ash is kept constant. The specimen is a 150mmx150mmx150mm cube, and the concrete is cast in a 150mmx300mm cylinder. The cast specimens are held for 28 days to cure. Compressive and split tensile strength tests are used to achieve the results. The combination at 10%, at 20%, at 20%, and 20% produced better strength results in all proportions from 10% to 50%. Besides, scanning electron microscopy techniques were used to understand better phase changes and the formation of microstructures to maturing the combination of materials at various percentages. SEM was used to evaluate the microstructure of the concrete for five different varieties, which helps with solid growth. With the highest compressive strength gained among all the mixes from 10% to 50% with combinations for M30 grade of concrete at 28 days, significant innovative information on particle shape and microstructure was observed. Via SEM study, a good correlation of this Microscopical quantitative knowledge and material properties is also presented.\",\"PeriodicalId\":356159,\"journal\":{\"name\":\"Indian Journal of Structure Engineering\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Structure Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/IJSE.B1312.111221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Structure Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/IJSE.B1312.111221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

释放到大气中的二氧化碳总量大致相当于生产水泥的总量。水泥生产消耗了大量的自然资源和水泥替代材料,对三元混合混凝土的微观结构性能进行了分析。本分析中的配合比为M30混凝土。用两种材料的混合物取代水泥,其量在10%至50%之间。对于材料的混合,粉煤灰保持不变。试件为150mmx150mmx150mm的立方体,混凝土浇筑成150mmx300mm的圆柱体。石膏标本放置28天以使其固化。通过抗压和劈裂拉伸强度试验获得了结果。10%、20%、20%和20%的组合在10%至50%的所有比例下都产生了更好的强度结果。此外,利用扫描电镜技术可以更好地了解不同百分比材料组合成熟时的相变化和微观结构的形成。利用扫描电子显微镜对5种不同品种混凝土的微观结构进行了评价,发现其有利于固相生长。M30级混凝土的抗压强度在28天内从10%到50%的混合料中获得了最高的抗压强度,观察到颗粒形状和微观结构方面的重要创新信息。通过扫描电镜研究,这种微观定量知识与材料性能也有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro Structural Properties of Ternary Blended Concrete
The sum of CO2 that has been released into the atmosphere is roughly equal to the amount of cement produced. Cement manufacturing now consumes many natural resources and cement substitute materials in the analysis of Micro Structural Properties of Ternary Blended Concrete. The mixed proportion in this analysis is made of M30 Concrete. The cement is substituted with a mixture of two materials in amounts ranging from 10% to 50%. For the mix of materials, Fly Ash is kept constant. The specimen is a 150mmx150mmx150mm cube, and the concrete is cast in a 150mmx300mm cylinder. The cast specimens are held for 28 days to cure. Compressive and split tensile strength tests are used to achieve the results. The combination at 10%, at 20%, at 20%, and 20% produced better strength results in all proportions from 10% to 50%. Besides, scanning electron microscopy techniques were used to understand better phase changes and the formation of microstructures to maturing the combination of materials at various percentages. SEM was used to evaluate the microstructure of the concrete for five different varieties, which helps with solid growth. With the highest compressive strength gained among all the mixes from 10% to 50% with combinations for M30 grade of concrete at 28 days, significant innovative information on particle shape and microstructure was observed. Via SEM study, a good correlation of this Microscopical quantitative knowledge and material properties is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of High-Rise Building Shapes on Wind Flow Characteristics and Energy Potential Flexural Behaviour of FRC Beams Wrapped With FRP Study of Rail Structure Interaction on Double-Decker integrated bridge with Metro and Highway Structure Analysis and Modelling of Reinforced Concrete Beams Study of the Strain-Stress Behavior of the loess Soil and Its Numerical Modeling by ABAQUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1