具有时间逻辑约束切换的非线性系统主动模型判别的多参数方法

Ruochen Niu, Syed M. Hassaan, Sze Zheng Yong
{"title":"具有时间逻辑约束切换的非线性系统主动模型判别的多参数方法","authors":"Ruochen Niu, Syed M. Hassaan, Sze Zheng Yong","doi":"10.23919/ACC53348.2022.9867867","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the optimal input design problem for active model discrimination (AMD) among a set of switched nonlinear models that are constrained by metric/signal temporal logic specifications and affected by uncontrolled inputs and noise. To deal with nonlinear and non-convex constraints in the resulting bilevel optimization problem, we first over-approximate the nonlinear dynamics using piecewise affine abstractions. Then, we solve the relaxed inner problem of the bilevel AMD problem as parametric optimization problems and substitute the parametric solutions into the outer problem to obtain sufficient separating inputs for AMD. Moreover, since the parametric optimization problems are often computationally demanding, we propose several strategies to reduce the computational time, while preserving feasibility of the separating inputs for AMD. Finally, we demonstrate the effectiveness of our approach on several illustrative examples on fault detection and lane changing scenario.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Multi-Parametric Method for Active Model Discrimination of Nonlinear Systems with Temporal Logic-Constrained Switching\",\"authors\":\"Ruochen Niu, Syed M. Hassaan, Sze Zheng Yong\",\"doi\":\"10.23919/ACC53348.2022.9867867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the optimal input design problem for active model discrimination (AMD) among a set of switched nonlinear models that are constrained by metric/signal temporal logic specifications and affected by uncontrolled inputs and noise. To deal with nonlinear and non-convex constraints in the resulting bilevel optimization problem, we first over-approximate the nonlinear dynamics using piecewise affine abstractions. Then, we solve the relaxed inner problem of the bilevel AMD problem as parametric optimization problems and substitute the parametric solutions into the outer problem to obtain sufficient separating inputs for AMD. Moreover, since the parametric optimization problems are often computationally demanding, we propose several strategies to reduce the computational time, while preserving feasibility of the separating inputs for AMD. Finally, we demonstrate the effectiveness of our approach on several illustrative examples on fault detection and lane changing scenario.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑了一组受度量/信号时间逻辑规范约束并受非控制输入和噪声影响的切换非线性模型的主动模型判别(AMD)的最优输入设计问题。为了处理由此产生的双层优化问题中的非线性和非凸约束,我们首先使用分段仿射抽象对非线性动力学进行过近似。然后,将双层AMD问题的松弛内部问题求解为参数优化问题,并将参数解代入外部问题,得到足够的分离输入。此外,由于参数优化问题通常需要大量的计算量,我们提出了几种策略来减少计算时间,同时保持AMD分离输入的可行性。最后,通过故障检测和变道场景的实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Parametric Method for Active Model Discrimination of Nonlinear Systems with Temporal Logic-Constrained Switching
In this paper, we consider the optimal input design problem for active model discrimination (AMD) among a set of switched nonlinear models that are constrained by metric/signal temporal logic specifications and affected by uncontrolled inputs and noise. To deal with nonlinear and non-convex constraints in the resulting bilevel optimization problem, we first over-approximate the nonlinear dynamics using piecewise affine abstractions. Then, we solve the relaxed inner problem of the bilevel AMD problem as parametric optimization problems and substitute the parametric solutions into the outer problem to obtain sufficient separating inputs for AMD. Moreover, since the parametric optimization problems are often computationally demanding, we propose several strategies to reduce the computational time, while preserving feasibility of the separating inputs for AMD. Finally, we demonstrate the effectiveness of our approach on several illustrative examples on fault detection and lane changing scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1