只为我的眼睛

M. Stevens
{"title":"只为我的眼睛","authors":"M. Stevens","doi":"10.1093/oso/9780198813675.003.0003","DOIUrl":null,"url":null,"abstract":"This chapter explores how vision is used by animals and the diversity in ways of seeing. It first details how colour vision works, focusing on the example of honeybees, which, like humans, are trichromatic and have good colour vision. Bees have a dedicated ultraviolet (UV) receptor, and then one for seeing shortwave (blue) and mediumwave (green) light. Other animals deviate more substantially, in that they have either more or fewer receptors used in colour vision, and hence different ‘dimensions’ of colour perception. The chapter then considers how jumping spiders use UV vision in identifying known or suitable prey species, as well as in mating. It also looks at polarisation vision in mantis shrimp. Mantis shrimp are bizarre in the number of receptors they have, each sensitive to different parts of the light spectrum. Finally, the chapter assesses how toads recognize prey from non-prey. The toad’s visual system acts as a ‘feature detector’ based on several stages of visual processing, producing a quick and appropriate response to a set of criteria that reliably encode objects of particular importance—in this case, food.","PeriodicalId":180249,"journal":{"name":"Secret Worlds","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"For My Eyes Only\",\"authors\":\"M. Stevens\",\"doi\":\"10.1093/oso/9780198813675.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter explores how vision is used by animals and the diversity in ways of seeing. It first details how colour vision works, focusing on the example of honeybees, which, like humans, are trichromatic and have good colour vision. Bees have a dedicated ultraviolet (UV) receptor, and then one for seeing shortwave (blue) and mediumwave (green) light. Other animals deviate more substantially, in that they have either more or fewer receptors used in colour vision, and hence different ‘dimensions’ of colour perception. The chapter then considers how jumping spiders use UV vision in identifying known or suitable prey species, as well as in mating. It also looks at polarisation vision in mantis shrimp. Mantis shrimp are bizarre in the number of receptors they have, each sensitive to different parts of the light spectrum. Finally, the chapter assesses how toads recognize prey from non-prey. The toad’s visual system acts as a ‘feature detector’ based on several stages of visual processing, producing a quick and appropriate response to a set of criteria that reliably encode objects of particular importance—in this case, food.\",\"PeriodicalId\":180249,\"journal\":{\"name\":\"Secret Worlds\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Secret Worlds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198813675.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Secret Worlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198813675.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这一章探讨了动物如何使用视觉以及不同的观察方式。它首先详细介绍了色觉是如何工作的,重点是蜜蜂的例子,蜜蜂和人类一样,是三色的,有很好的色觉。蜜蜂有一个专门的紫外线(UV)感受器,然后是一个可以看到短波(蓝色)和中波(绿色)光的感受器。其他动物的差异更大,因为它们用于颜色视觉的受体或多或少,因此颜色感知的“维度”不同。然后,本章讨论了跳蛛如何利用紫外线视觉识别已知或合适的猎物种类,以及交配。它还研究了螳螂虾的偏振视觉。螳螂虾的受体数量很奇怪,每个受体对光谱的不同部分都很敏感。最后,本章评估了蟾蜍如何识别猎物和非猎物。蟾蜍的视觉系统就像一个“特征检测器”,基于视觉处理的几个阶段,对一组可靠地编码特别重要的物体(在这种情况下是食物)的标准产生快速和适当的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
For My Eyes Only
This chapter explores how vision is used by animals and the diversity in ways of seeing. It first details how colour vision works, focusing on the example of honeybees, which, like humans, are trichromatic and have good colour vision. Bees have a dedicated ultraviolet (UV) receptor, and then one for seeing shortwave (blue) and mediumwave (green) light. Other animals deviate more substantially, in that they have either more or fewer receptors used in colour vision, and hence different ‘dimensions’ of colour perception. The chapter then considers how jumping spiders use UV vision in identifying known or suitable prey species, as well as in mating. It also looks at polarisation vision in mantis shrimp. Mantis shrimp are bizarre in the number of receptors they have, each sensitive to different parts of the light spectrum. Finally, the chapter assesses how toads recognize prey from non-prey. The toad’s visual system acts as a ‘feature detector’ based on several stages of visual processing, producing a quick and appropriate response to a set of criteria that reliably encode objects of particular importance—in this case, food.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Singing Rats and Sonar Bats Homing Turtles and Animal Magnetism Electric Attraction For My Eyes Only A Plethora of Senses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1