基于自适应背景的车辆检测

Baoxia Cui, Shang Sun, Yong Duan
{"title":"基于自适应背景的车辆检测","authors":"Baoxia Cui, Shang Sun, Yong Duan","doi":"10.1109/WKDD.2009.117","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of vehicle detection, and to solve the gradually changing brightness of light in the background and the movement of the objects in the background, this paper presents an algorithm that fast adapts to the background generation and updating. Focus on the objects with similar gray background, and moving object missing caused easily by segmentation, the threshold segmentation and edge sharpening--the combination of methods is used here, to strengthen the edge of moving objects. The experimental result shows that: the algorithm can adapt to changes in the background, compensate the missing moving objects after segmentation, which has high robustness and excellent real-time performance.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Vehicle Detection Based on Adaptive Background\",\"authors\":\"Baoxia Cui, Shang Sun, Yong Duan\",\"doi\":\"10.1109/WKDD.2009.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the accuracy of vehicle detection, and to solve the gradually changing brightness of light in the background and the movement of the objects in the background, this paper presents an algorithm that fast adapts to the background generation and updating. Focus on the objects with similar gray background, and moving object missing caused easily by segmentation, the threshold segmentation and edge sharpening--the combination of methods is used here, to strengthen the edge of moving objects. The experimental result shows that: the algorithm can adapt to changes in the background, compensate the missing moving objects after segmentation, which has high robustness and excellent real-time performance.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了提高车辆检测的精度,并解决背景中光线亮度逐渐变化和背景中物体运动的问题,本文提出了一种快速适应背景生成和更新的算法。针对灰度背景相似的物体,以及易因分割而导致运动物体丢失的情况,本文采用阈值分割和边缘锐化——结合的方法,来强化运动物体的边缘。实验结果表明:该算法能够适应背景变化,对分割后缺失的运动目标进行补偿,具有较高的鲁棒性和优异的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vehicle Detection Based on Adaptive Background
In order to improve the accuracy of vehicle detection, and to solve the gradually changing brightness of light in the background and the movement of the objects in the background, this paper presents an algorithm that fast adapts to the background generation and updating. Focus on the objects with similar gray background, and moving object missing caused easily by segmentation, the threshold segmentation and edge sharpening--the combination of methods is used here, to strengthen the edge of moving objects. The experimental result shows that: the algorithm can adapt to changes in the background, compensate the missing moving objects after segmentation, which has high robustness and excellent real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Blind Watermarking Scheme in Contourlet Domain Based on Singular Value Decomposition Research on the Electric Power Enterprise Performance Evaluation Based on Symbiosis Theory Structured Topology for Trust in P2P Network Prediction by Integration of Phase Space Reconstruction and a Novel Evolutionary System under Deregulated Power Market Weak Signal Detection Based on Chaotic Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1