{"title":"内存宏的3D IC层划分:PPA与热权衡","authors":"Lingjun Zhu, Nesara Eranna Bethur, Yi-Chen Lu, Youngsang Cho, Yunhyeok Im, S. Lim","doi":"10.1145/3531437.3539724","DOIUrl":null,"url":null,"abstract":"Micro-bump and hybrid bonding technologies have enabled 3D ICs and provided remarkable performance gain, but the memory macro partitioning problem also becomes more complicated due to the limited 3D connection density. In this paper, we evaluate and quantify the impacts of various macro partitioning on the performance and temperature in commercial-grade 3D ICs. In addition, we propose a set of partitioning guidelines and a quick constraint-graph-based approach to create floorplans for logic-on-memory 3D ICs. Experimental results show that the optimized macro partitioning can help improve the performance of logic-on-memory 3D ICs by up to 15%, at the cost of 8°C temperature increase. Assuming air cooling, our simulation shows the 3D ICs are thermally sustainable with 97°C maximum temperature.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D IC Tier Partitioning of Memory Macros: PPA vs. Thermal Tradeoffs\",\"authors\":\"Lingjun Zhu, Nesara Eranna Bethur, Yi-Chen Lu, Youngsang Cho, Yunhyeok Im, S. Lim\",\"doi\":\"10.1145/3531437.3539724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-bump and hybrid bonding technologies have enabled 3D ICs and provided remarkable performance gain, but the memory macro partitioning problem also becomes more complicated due to the limited 3D connection density. In this paper, we evaluate and quantify the impacts of various macro partitioning on the performance and temperature in commercial-grade 3D ICs. In addition, we propose a set of partitioning guidelines and a quick constraint-graph-based approach to create floorplans for logic-on-memory 3D ICs. Experimental results show that the optimized macro partitioning can help improve the performance of logic-on-memory 3D ICs by up to 15%, at the cost of 8°C temperature increase. Assuming air cooling, our simulation shows the 3D ICs are thermally sustainable with 97°C maximum temperature.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D IC Tier Partitioning of Memory Macros: PPA vs. Thermal Tradeoffs
Micro-bump and hybrid bonding technologies have enabled 3D ICs and provided remarkable performance gain, but the memory macro partitioning problem also becomes more complicated due to the limited 3D connection density. In this paper, we evaluate and quantify the impacts of various macro partitioning on the performance and temperature in commercial-grade 3D ICs. In addition, we propose a set of partitioning guidelines and a quick constraint-graph-based approach to create floorplans for logic-on-memory 3D ICs. Experimental results show that the optimized macro partitioning can help improve the performance of logic-on-memory 3D ICs by up to 15%, at the cost of 8°C temperature increase. Assuming air cooling, our simulation shows the 3D ICs are thermally sustainable with 97°C maximum temperature.