结构简约:序列空间的缩减

Roberto Blanco
{"title":"结构简约:序列空间的缩减","authors":"Roberto Blanco","doi":"10.1109/BIBM.2010.5706536","DOIUrl":null,"url":null,"abstract":"Computational phylogenetics has historically neglected strict theoretical approaches that exploit the mathematical models beneath which it abstracts away the nuances of evolution. In particular, parsimony is conceptually simple and amenable to rigorous treatment, and has a clear analogue in graph theory, the Steiner tree. We present and refine the notion of sequence space as the soil from which all graph-theoretical methods arise, studying its structural properties and complexity with an eye on maximum parsimony. We therefrom introduce a basic set of very efficient implicit reductions that discard information with a fixed effect on the optimality of the solution, and show how it can be applied to large, real datasets.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural parsimony: Reductions in sequence space\",\"authors\":\"Roberto Blanco\",\"doi\":\"10.1109/BIBM.2010.5706536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational phylogenetics has historically neglected strict theoretical approaches that exploit the mathematical models beneath which it abstracts away the nuances of evolution. In particular, parsimony is conceptually simple and amenable to rigorous treatment, and has a clear analogue in graph theory, the Steiner tree. We present and refine the notion of sequence space as the soil from which all graph-theoretical methods arise, studying its structural properties and complexity with an eye on maximum parsimony. We therefrom introduce a basic set of very efficient implicit reductions that discard information with a fixed effect on the optimality of the solution, and show how it can be applied to large, real datasets.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算系统发育学在历史上忽视了严格的理论方法,这些方法利用数学模型抽象出进化的细微差别。特别地,简约在概念上是简单的,可以严格处理,并且在图论中有一个清晰的类比,即斯坦纳树。我们提出并完善了序列空间的概念,作为所有图理论方法产生的土壤,研究了它的结构性质和复杂性,并着眼于最大简约性。因此,我们引入了一组非常有效的隐式约简,这些约简丢弃了对解决方案最优性有固定影响的信息,并展示了如何将其应用于大型真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural parsimony: Reductions in sequence space
Computational phylogenetics has historically neglected strict theoretical approaches that exploit the mathematical models beneath which it abstracts away the nuances of evolution. In particular, parsimony is conceptually simple and amenable to rigorous treatment, and has a clear analogue in graph theory, the Steiner tree. We present and refine the notion of sequence space as the soil from which all graph-theoretical methods arise, studying its structural properties and complexity with an eye on maximum parsimony. We therefrom introduce a basic set of very efficient implicit reductions that discard information with a fixed effect on the optimality of the solution, and show how it can be applied to large, real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1