可变精度表示有效的VQ码本存储

Raffi Dionysian, M. Ercegovac
{"title":"可变精度表示有效的VQ码本存储","authors":"Raffi Dionysian, M. Ercegovac","doi":"10.1109/DCC.1992.227449","DOIUrl":null,"url":null,"abstract":"In vector quantization (VQ) with fast search techniques, the storage available limits the number of codevectors used in VQ. Variable precision representation (VPR) is a simple codebook compression scheme. VPR for each vector y stores the number e(y), the number of leading bits which are zero in all elements, and avoids storing those leading bits. When storing the difference of codevectors in a binary tree structured VQ codebook, VPR can save from 24% to 44% in storage. Storing the codevector difference removes the redundancy between similar codevectors. Also as the mean square error of the VQ encoder is lowered, on the average, the difference becomes smaller and yields to better compression. To process vectors in VPR format, the operator uses a bit-serial, element-parallel scheme to evaluate the inner product. The operator's throughput can be increased by replicating its core. >","PeriodicalId":170269,"journal":{"name":"Data Compression Conference, 1992.","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable precision representation for efficient VQ codebook storage\",\"authors\":\"Raffi Dionysian, M. Ercegovac\",\"doi\":\"10.1109/DCC.1992.227449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vector quantization (VQ) with fast search techniques, the storage available limits the number of codevectors used in VQ. Variable precision representation (VPR) is a simple codebook compression scheme. VPR for each vector y stores the number e(y), the number of leading bits which are zero in all elements, and avoids storing those leading bits. When storing the difference of codevectors in a binary tree structured VQ codebook, VPR can save from 24% to 44% in storage. Storing the codevector difference removes the redundancy between similar codevectors. Also as the mean square error of the VQ encoder is lowered, on the average, the difference becomes smaller and yields to better compression. To process vectors in VPR format, the operator uses a bit-serial, element-parallel scheme to evaluate the inner product. The operator's throughput can be increased by replicating its core. >\",\"PeriodicalId\":170269,\"journal\":{\"name\":\"Data Compression Conference, 1992.\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Compression Conference, 1992.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1992.227449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Compression Conference, 1992.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1992.227449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在具有快速搜索技术的矢量量化(VQ)中,可用的存储限制了VQ中使用的编码向量的数量。可变精度表示(VPR)是一种简单的码本压缩方案。对于每个向量y, VPR存储数字e(y),即所有元素中为零的前导位的数量,并避免存储这些前导位。在二叉树结构的VQ码本中存储码向差时,VPR可节省24% ~ 44%的存储空间。存储编码矢量差异可以消除相似编码矢量之间的冗余。此外,随着VQ编码器的均方误差降低,平均而言,差异变小,从而产生更好的压缩。为了处理VPR格式的向量,该算子使用位串行、元素并行的方案来计算内积。通过复制其核心,可以提高运营商的吞吐量。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable precision representation for efficient VQ codebook storage
In vector quantization (VQ) with fast search techniques, the storage available limits the number of codevectors used in VQ. Variable precision representation (VPR) is a simple codebook compression scheme. VPR for each vector y stores the number e(y), the number of leading bits which are zero in all elements, and avoids storing those leading bits. When storing the difference of codevectors in a binary tree structured VQ codebook, VPR can save from 24% to 44% in storage. Storing the codevector difference removes the redundancy between similar codevectors. Also as the mean square error of the VQ encoder is lowered, on the average, the difference becomes smaller and yields to better compression. To process vectors in VPR format, the operator uses a bit-serial, element-parallel scheme to evaluate the inner product. The operator's throughput can be increased by replicating its core. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossless interframe compression of medical images Coding for compression in full-text retrieval systems A comparison of codebook generation techniques for vector quantization Progressive vector quantization of multispectral image data using a massively parallel SIMD machine Parallel algorithms for optimal compression using dictionaries with the prefix property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1