TBD-DP:电信大数据可视化分析与数据定位

Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, D. Zeinalipour-Yazti, M. Mokbel
{"title":"TBD-DP:电信大数据可视化分析与数据定位","authors":"Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, D. Zeinalipour-Yazti, M. Mokbel","doi":"10.1109/MDM.2018.00050","DOIUrl":null,"url":null,"abstract":"In this demonstration paper, we present the TBD-DP operator, which relies on existing Machine Learning (ML) algorithms to abstract Telco Big Data (TBD) into compact models that can be stored and queried when necessary. Our proposed TBD-DP operator has the following two conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree to recover data within a certain accuracy. Our framework also includes visual and declarative interfaces for a variety of telco-specific data exploration tasks. We demonstrate the efficiency of the proposed operator using SPATE, which is a novel TBD visual analytic architecture we have developed. Our demo will enable attendees to interactively explore synthetic antenna signal traces, we will provide, in both visual and SQL mode. In both cases, the performance of the propositions will be quantitatively conveyed to the attendees through dedicated dashboards.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TBD-DP: Telco Big Data Visual Analytics with Data Postdiction\",\"authors\":\"Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, D. Zeinalipour-Yazti, M. Mokbel\",\"doi\":\"10.1109/MDM.2018.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demonstration paper, we present the TBD-DP operator, which relies on existing Machine Learning (ML) algorithms to abstract Telco Big Data (TBD) into compact models that can be stored and queried when necessary. Our proposed TBD-DP operator has the following two conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree to recover data within a certain accuracy. Our framework also includes visual and declarative interfaces for a variety of telco-specific data exploration tasks. We demonstrate the efficiency of the proposed operator using SPATE, which is a novel TBD visual analytic architecture we have developed. Our demo will enable attendees to interactively explore synthetic antenna signal traces, we will provide, in both visual and SQL mode. In both cases, the performance of the propositions will be quantitatively conveyed to the attendees through dedicated dashboards.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇演示论文中,我们提出了TBD- dp算子,它依赖于现有的机器学习(ML)算法,将电信大数据(TBD)抽象成可以在必要时存储和查询的紧凑模型。我们提出的TBD-DP算子有以下两个概念阶段:(i)在离线阶段,它利用基于lstm的分层ML算法随时间和空间学习模型树(称为TBD-DP树);(ii)在线阶段,利用TBD-DP树恢复一定精度范围内的数据。我们的框架还包括用于各种电信特定数据探索任务的可视化和声明性接口。我们使用我们开发的一种新的TBD视觉分析体系结构——频带来证明所提出的算子的效率。我们的演示将使与会者能够交互式地探索合成天线信号轨迹,我们将提供可视化和SQL模式。在这两种情况下,主张的表现将通过专门的仪表板定量地传达给与会者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TBD-DP: Telco Big Data Visual Analytics with Data Postdiction
In this demonstration paper, we present the TBD-DP operator, which relies on existing Machine Learning (ML) algorithms to abstract Telco Big Data (TBD) into compact models that can be stored and queried when necessary. Our proposed TBD-DP operator has the following two conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree to recover data within a certain accuracy. Our framework also includes visual and declarative interfaces for a variety of telco-specific data exploration tasks. We demonstrate the efficiency of the proposed operator using SPATE, which is a novel TBD visual analytic architecture we have developed. Our demo will enable attendees to interactively explore synthetic antenna signal traces, we will provide, in both visual and SQL mode. In both cases, the performance of the propositions will be quantitatively conveyed to the attendees through dedicated dashboards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1