{"title":"基于前馈神经网络的脚印识别","authors":"Rafli A. Nugraha, H. Nuha","doi":"10.1109/CyberneticsCom55287.2022.9865411","DOIUrl":null,"url":null,"abstract":"Humans are individuals who have different characteristics from other humans. Such as the shape of the face, fingerprints, corneas, and the sound of footsteps. The difference is then used for a security system or also called biometrics. Therefore, in the discussion of this research, the research was conducted to test the success rate or accuracy value of the two classification methods of the footstep recognition system that can detect more than one person, with the method used Mel Frequency Cepstral Coefficients (MFCC) as feature extraction, Artificial Neural Network (ANN) and Recurrent Neural Network (RNN) as footstep classification methods. From the two classification methods, the authors conducted research to try to build a footstep recognition system with the ANN classification method for the first system and the RNN classification method for the second system. The results of this study indicate that in the first system, using the ANN Classification method, the accuracy is 93.59, val_accuracy is 88.74, and the loss value is 44.18. Then for the second system, the results of the RNN classification method obtained an accuracy of 96.66, val_accuracy of 87, and a loss value of 0.84. There are differences in results between the ANN and RNN classification methods, that in this study the RNN classification method has an accuracy value of 3.07 which is higher than the ANN classification method. So in this study, the success rate of the foot tracking system using the RNN classification method is better than the ANN classification method.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Footstep Recognition Using Feedforward Neural Network\",\"authors\":\"Rafli A. Nugraha, H. Nuha\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans are individuals who have different characteristics from other humans. Such as the shape of the face, fingerprints, corneas, and the sound of footsteps. The difference is then used for a security system or also called biometrics. Therefore, in the discussion of this research, the research was conducted to test the success rate or accuracy value of the two classification methods of the footstep recognition system that can detect more than one person, with the method used Mel Frequency Cepstral Coefficients (MFCC) as feature extraction, Artificial Neural Network (ANN) and Recurrent Neural Network (RNN) as footstep classification methods. From the two classification methods, the authors conducted research to try to build a footstep recognition system with the ANN classification method for the first system and the RNN classification method for the second system. The results of this study indicate that in the first system, using the ANN Classification method, the accuracy is 93.59, val_accuracy is 88.74, and the loss value is 44.18. Then for the second system, the results of the RNN classification method obtained an accuracy of 96.66, val_accuracy of 87, and a loss value of 0.84. There are differences in results between the ANN and RNN classification methods, that in this study the RNN classification method has an accuracy value of 3.07 which is higher than the ANN classification method. So in this study, the success rate of the foot tracking system using the RNN classification method is better than the ANN classification method.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类是具有与其他人不同特征的个体。比如脸型、指纹、角膜、脚步声等。这种差异随后被用于安全系统,也被称为生物识别技术。因此,在本研究的讨论中,采用Mel Frequency Cepstral Coefficients (MFCC)作为特征提取,人工神经网络(Artificial Neural Network, ANN)和递归神经网络(Recurrent Neural Network, RNN)作为脚步声分类方法,研究两种可以检测多人的脚步声识别系统分类方法的成功率或准确率值。从这两种分类方法出发,笔者进行了研究,尝试用人工神经网络(ANN)分类方法对第一个系统进行分类,用RNN分类方法对第二个系统进行分类,构建一个脚印识别系统。研究结果表明,在第一个系统中,采用ANN分类方法,准确率为93.59,val_accuracy为88.74,损失值为44.18。对于第二个系统,RNN分类方法的准确率为96.66,val_accuracy为87,loss值为0.84。人工神经网络和RNN分类方法的结果存在差异,在本研究中,RNN分类方法的准确率值为3.07,高于人工神经网络分类方法。因此在本研究中,采用RNN分类方法的足部跟踪系统的成功率优于ANN分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Footstep Recognition Using Feedforward Neural Network
Humans are individuals who have different characteristics from other humans. Such as the shape of the face, fingerprints, corneas, and the sound of footsteps. The difference is then used for a security system or also called biometrics. Therefore, in the discussion of this research, the research was conducted to test the success rate or accuracy value of the two classification methods of the footstep recognition system that can detect more than one person, with the method used Mel Frequency Cepstral Coefficients (MFCC) as feature extraction, Artificial Neural Network (ANN) and Recurrent Neural Network (RNN) as footstep classification methods. From the two classification methods, the authors conducted research to try to build a footstep recognition system with the ANN classification method for the first system and the RNN classification method for the second system. The results of this study indicate that in the first system, using the ANN Classification method, the accuracy is 93.59, val_accuracy is 88.74, and the loss value is 44.18. Then for the second system, the results of the RNN classification method obtained an accuracy of 96.66, val_accuracy of 87, and a loss value of 0.84. There are differences in results between the ANN and RNN classification methods, that in this study the RNN classification method has an accuracy value of 3.07 which is higher than the ANN classification method. So in this study, the success rate of the foot tracking system using the RNN classification method is better than the ANN classification method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method of Electroencephalography Electrode Selection for Motor Imagery Application Aspect-based Sentiment Analysis for Improving Online Learning Program Based on Student Feedback Fuzzy Logic Control Strategy for Axial Flux Permanent Magnet Synchronous Generator in WHM 1.5KW Welcome Message from General Chair The 6th Cyberneticscom 2022 Performance Comparison of AODV, AODV-ETX and Modified AODV-ETX in VANET using NS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1