关于优化器-激活对的收敛性

Dachuan Zhao
{"title":"关于优化器-激活对的收敛性","authors":"Dachuan Zhao","doi":"10.1109/ICCC51575.2020.9345160","DOIUrl":null,"url":null,"abstract":"The effect of training of deep neural network depends on the selection of the activation function and the optimizer, because the different activation functions lead to distinct loss curvature and the different optimizers will have different performance in distinct curvatures. In this paper, we select different combinations of activation functions and optimizers, seek to select the best combination under the same experiment setting, and take a general discussion for the efficiency of these combinations finally. Moreover, to guarantee fair comparison the hyperparameters tuning is conducted.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of optimizer-activation pairs\",\"authors\":\"Dachuan Zhao\",\"doi\":\"10.1109/ICCC51575.2020.9345160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of training of deep neural network depends on the selection of the activation function and the optimizer, because the different activation functions lead to distinct loss curvature and the different optimizers will have different performance in distinct curvatures. In this paper, we select different combinations of activation functions and optimizers, seek to select the best combination under the same experiment setting, and take a general discussion for the efficiency of these combinations finally. Moreover, to guarantee fair comparison the hyperparameters tuning is conducted.\",\"PeriodicalId\":386048,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC51575.2020.9345160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深层神经网络的训练效果取决于激活函数和优化器的选择,因为不同的激活函数会导致不同的损失曲率,不同的优化器在不同的曲率下会有不同的性能。本文选择了激活函数和优化器的不同组合,寻求在相同实验设置下的最佳组合,最后对这些组合的效率进行了一般性的讨论。此外,为了保证比较的公平性,还进行了超参数整定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the convergence of optimizer-activation pairs
The effect of training of deep neural network depends on the selection of the activation function and the optimizer, because the different activation functions lead to distinct loss curvature and the different optimizers will have different performance in distinct curvatures. In this paper, we select different combinations of activation functions and optimizers, seek to select the best combination under the same experiment setting, and take a general discussion for the efficiency of these combinations finally. Moreover, to guarantee fair comparison the hyperparameters tuning is conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe and Stable Timing Method over Air Interface Based on Multi-Base Station Cooperation Peak to Average Power Ratio (PAPR) Mitigation for Underwater Acoustic OFDM System by Using an Efficient Hybridization Technique Monocular Visual-Inertial Odometry Based on Point and Line Features Block Halftoning for Size-Invariant Visual Cryptography Based on Two-Dimensional Lattices Airborne STAP with Unknown Mutual Coupling for Coprime Sampling Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1