{"title":"动态环境经济调度:基于乘数交替方向法的分布式解决方案","authors":"D. H. Nguyen, T. Narikiyo, M. Kawanishi","doi":"10.1109/ICSET.2016.7811747","DOIUrl":null,"url":null,"abstract":"This paper proposes a distributed control approach for optimal power dispatch towards environment-friendly power grids. To do so, an optimization problem called environmental economic dispatch, which is subjected to physical constraints of the considered power system, is solved. Consequently, we propose an approach based on the Alternating Direction Method of Multipliers (ADMM) to obtain the globally optimal solution of that optimization problem in a distributed manner under a fast convergence. As a result, each generation unit can derive by itself an optimal generated power that minimizes with compromising both fuel and emission costs while satisfying both global and local physical constraints caused by the whole system and by its own. The most distinguished feature of this approach is that the power balance constraint is always guaranteed during the execution of the algorithm. Finally, the performance of our proposed approach is illustrated through the simulation to a realistic power system and the comparison with another method.","PeriodicalId":164446,"journal":{"name":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic environmental economic dispatch: A distributed solution based on an alternating direction method of multipliers\",\"authors\":\"D. H. Nguyen, T. Narikiyo, M. Kawanishi\",\"doi\":\"10.1109/ICSET.2016.7811747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a distributed control approach for optimal power dispatch towards environment-friendly power grids. To do so, an optimization problem called environmental economic dispatch, which is subjected to physical constraints of the considered power system, is solved. Consequently, we propose an approach based on the Alternating Direction Method of Multipliers (ADMM) to obtain the globally optimal solution of that optimization problem in a distributed manner under a fast convergence. As a result, each generation unit can derive by itself an optimal generated power that minimizes with compromising both fuel and emission costs while satisfying both global and local physical constraints caused by the whole system and by its own. The most distinguished feature of this approach is that the power balance constraint is always guaranteed during the execution of the algorithm. Finally, the performance of our proposed approach is illustrated through the simulation to a realistic power system and the comparison with another method.\",\"PeriodicalId\":164446,\"journal\":{\"name\":\"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSET.2016.7811747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSET.2016.7811747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic environmental economic dispatch: A distributed solution based on an alternating direction method of multipliers
This paper proposes a distributed control approach for optimal power dispatch towards environment-friendly power grids. To do so, an optimization problem called environmental economic dispatch, which is subjected to physical constraints of the considered power system, is solved. Consequently, we propose an approach based on the Alternating Direction Method of Multipliers (ADMM) to obtain the globally optimal solution of that optimization problem in a distributed manner under a fast convergence. As a result, each generation unit can derive by itself an optimal generated power that minimizes with compromising both fuel and emission costs while satisfying both global and local physical constraints caused by the whole system and by its own. The most distinguished feature of this approach is that the power balance constraint is always guaranteed during the execution of the algorithm. Finally, the performance of our proposed approach is illustrated through the simulation to a realistic power system and the comparison with another method.