大规模图像集合中的索引:缩放属性和基准

M. Aly, Mario E. Munich, P. Perona
{"title":"大规模图像集合中的索引:缩放属性和基准","authors":"M. Aly, Mario E. Munich, P. Perona","doi":"10.1109/WACV.2011.5711534","DOIUrl":null,"url":null,"abstract":"Indexing quickly and accurately in a large collection of images has become an important problem with many applications. Given a query image, the goal is to retrieve matching images in the collection. We compare the structure and properties of seven different methods based on the two leading approaches: voting from matching of local descriptors vs. matching histograms of visual words, including some new methods. We derive theoretical estimates of how the memory and computational cost scale with the number of images in the database. We evaluate these properties empirically on four real-world datasets with different statistics. We discuss the pros and cons of the different methods and suggest promising directions for future research.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Indexing in large scale image collections: Scaling properties and benchmark\",\"authors\":\"M. Aly, Mario E. Munich, P. Perona\",\"doi\":\"10.1109/WACV.2011.5711534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indexing quickly and accurately in a large collection of images has become an important problem with many applications. Given a query image, the goal is to retrieve matching images in the collection. We compare the structure and properties of seven different methods based on the two leading approaches: voting from matching of local descriptors vs. matching histograms of visual words, including some new methods. We derive theoretical estimates of how the memory and computational cost scale with the number of images in the database. We evaluate these properties empirically on four real-world datasets with different statistics. We discuss the pros and cons of the different methods and suggest promising directions for future research.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

在大量的图像集合中快速准确地索引已成为许多应用程序的一个重要问题。给定一个查询图像,目标是检索集合中的匹配图像。基于两种领先的方法:局部描述符匹配投票和视觉词直方图匹配投票,我们比较了七种不同方法的结构和性质,包括一些新方法。我们推导了内存和计算成本如何随数据库中图像数量的变化而变化的理论估计。我们在四个具有不同统计数据的真实数据集上对这些属性进行了经验评估。我们讨论了不同方法的优缺点,并提出了未来研究的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indexing in large scale image collections: Scaling properties and benchmark
Indexing quickly and accurately in a large collection of images has become an important problem with many applications. Given a query image, the goal is to retrieve matching images in the collection. We compare the structure and properties of seven different methods based on the two leading approaches: voting from matching of local descriptors vs. matching histograms of visual words, including some new methods. We derive theoretical estimates of how the memory and computational cost scale with the number of images in the database. We evaluate these properties empirically on four real-world datasets with different statistics. We discuss the pros and cons of the different methods and suggest promising directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1