自动匹配Bug报告与相关的应用程序评论

Marlo Häring, Christoph Stanik, W. Maalej
{"title":"自动匹配Bug报告与相关的应用程序评论","authors":"Marlo Häring, Christoph Stanik, W. Maalej","doi":"10.1109/ICSE43902.2021.00092","DOIUrl":null,"url":null,"abstract":"App stores allow users to give valuable feedback on apps, and developers to find this feedback and use it for the software evolution. However, finding user feedback that matches existing bug reports in issue trackers is challenging as users and developers often use a different language. In this work, we introduce DeepMatcher, an automatic approach using state-of-the-art deep learning methods to match problem reports in app reviews to bug reports in issue trackers. We evaluated DeepMatcher with four open-source apps quantitatively and qualitatively. On average, DeepMatcher achieved a hit ratio of 0.71 and a Mean Average Precision of 0.55. For 91 problem reports, DeepMatcher did not find any matching bug report. When manually analyzing these 91 problem reports and the issue trackers of the studied apps, we found that in 47 cases, users actually described a problem before developers discovered and documented it in the issue tracker. We discuss our findings and different use cases for DeepMatcher.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"731 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Automatically Matching Bug Reports With Related App Reviews\",\"authors\":\"Marlo Häring, Christoph Stanik, W. Maalej\",\"doi\":\"10.1109/ICSE43902.2021.00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"App stores allow users to give valuable feedback on apps, and developers to find this feedback and use it for the software evolution. However, finding user feedback that matches existing bug reports in issue trackers is challenging as users and developers often use a different language. In this work, we introduce DeepMatcher, an automatic approach using state-of-the-art deep learning methods to match problem reports in app reviews to bug reports in issue trackers. We evaluated DeepMatcher with four open-source apps quantitatively and qualitatively. On average, DeepMatcher achieved a hit ratio of 0.71 and a Mean Average Precision of 0.55. For 91 problem reports, DeepMatcher did not find any matching bug report. When manually analyzing these 91 problem reports and the issue trackers of the studied apps, we found that in 47 cases, users actually described a problem before developers discovered and documented it in the issue tracker. We discuss our findings and different use cases for DeepMatcher.\",\"PeriodicalId\":305167,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"volume\":\"731 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE43902.2021.00092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

应用商店允许用户对应用提供有价值的反馈,开发者可以找到这些反馈并将其用于软件发展。然而,在问题跟踪器中找到与现有错误报告相匹配的用户反馈是具有挑战性的,因为用户和开发人员经常使用不同的语言。在这项工作中,我们介绍了DeepMatcher,这是一种使用最先进的深度学习方法来匹配应用程序审查中的问题报告和问题跟踪器中的错误报告的自动方法。我们用四个开源应用程序对DeepMatcher进行了定量和定性评估。平均而言,DeepMatcher的命中率为0.71,平均精度为0.55。对于91个问题报告,DeepMatcher没有找到任何匹配的错误报告。在手动分析这91个问题报告和问题跟踪器时,我们发现,在47个案例中,用户在开发人员发现问题并在问题跟踪器中记录问题之前就已经描述了问题。我们讨论了我们的发现和DeepMatcher的不同用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatically Matching Bug Reports With Related App Reviews
App stores allow users to give valuable feedback on apps, and developers to find this feedback and use it for the software evolution. However, finding user feedback that matches existing bug reports in issue trackers is challenging as users and developers often use a different language. In this work, we introduce DeepMatcher, an automatic approach using state-of-the-art deep learning methods to match problem reports in app reviews to bug reports in issue trackers. We evaluated DeepMatcher with four open-source apps quantitatively and qualitatively. On average, DeepMatcher achieved a hit ratio of 0.71 and a Mean Average Precision of 0.55. For 91 problem reports, DeepMatcher did not find any matching bug report. When manually analyzing these 91 problem reports and the issue trackers of the studied apps, we found that in 47 cases, users actually described a problem before developers discovered and documented it in the issue tracker. We discuss our findings and different use cases for DeepMatcher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuDelta: Delta-Oriented Mutation Testing at Commit Time Verifying Determinism in Sequential Programs Data-Oriented Differential Testing of Object-Relational Mapping Systems IoT Bugs and Development Challenges Onboarding vs. Diversity, Productivity and Quality — Empirical Study of the OpenStack Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1