基于时间序列统计建模和k-means聚类的轮廓提取

A. Hamad, N. Tsumura
{"title":"基于时间序列统计建模和k-means聚类的轮廓提取","authors":"A. Hamad, N. Tsumura","doi":"10.1109/ACPR.2011.6166672","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple and a robust method to detect and extract the silhouettes from a video sequence of a static camera based on background subtraction technique. The proposed method analyse the pixel history as a time series observations. A robust technique to detect motion based on kernel density estimation is presented. Two consecutive stages of the k-means clustering algorithm are utilized to identify the most reliable background regions and decrease false positives. Pixel and object based updating mechanism is presented to cope with challenges like gradual and sudden illumination changes, ghost appearance, and non-stationary background objects. Experimental results show the efficiency and the robustness of the proposed method to detect and extract silhouettes for outdoor and indoor environments.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silhouette extraction based on time-series statistical modeling and k-means clustering\",\"authors\":\"A. Hamad, N. Tsumura\",\"doi\":\"10.1109/ACPR.2011.6166672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simple and a robust method to detect and extract the silhouettes from a video sequence of a static camera based on background subtraction technique. The proposed method analyse the pixel history as a time series observations. A robust technique to detect motion based on kernel density estimation is presented. Two consecutive stages of the k-means clustering algorithm are utilized to identify the most reliable background regions and decrease false positives. Pixel and object based updating mechanism is presented to cope with challenges like gradual and sudden illumination changes, ghost appearance, and non-stationary background objects. Experimental results show the efficiency and the robustness of the proposed method to detect and extract silhouettes for outdoor and indoor environments.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种简单、鲁棒的基于背景减法的静态摄像机视频序列剪影检测与提取方法。该方法将像素历史作为时间序列观测来分析。提出了一种基于核密度估计的鲁棒运动检测技术。利用连续两个阶段的k-means聚类算法来识别最可靠的背景区域并减少误报。提出了基于像素和对象的更新机制,以应对渐变和突然的光照变化、鬼影现象和非静止背景物体等挑战。实验结果表明了该方法在室外和室内环境下轮廓检测和提取的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silhouette extraction based on time-series statistical modeling and k-means clustering
This paper proposes a simple and a robust method to detect and extract the silhouettes from a video sequence of a static camera based on background subtraction technique. The proposed method analyse the pixel history as a time series observations. A robust technique to detect motion based on kernel density estimation is presented. Two consecutive stages of the k-means clustering algorithm are utilized to identify the most reliable background regions and decrease false positives. Pixel and object based updating mechanism is presented to cope with challenges like gradual and sudden illumination changes, ghost appearance, and non-stationary background objects. Experimental results show the efficiency and the robustness of the proposed method to detect and extract silhouettes for outdoor and indoor environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1