Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, Gi-Joon Nam
{"title":"在基于深度学习的设计规则违反预测中处理非确定性的随机方法","authors":"Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, Gi-Joon Nam","doi":"10.1145/3508352.3549347","DOIUrl":null,"url":null,"abstract":"Deep learning is a promising approach to early DRV (Design Rule Violation) prediction. However, non-deterministic parallel routing hampers model training and degrades prediction accuracy. In this work, we propose a stochastic approach, called LGC-Net, to solve this problem. In this approach, we develop new techniques of Gaussian random field layer and focal likelihood loss function to seamlessly integrate Log Gaussian Cox process with deep learning. This approach provides not only statistical regression results but also classification ones with different thresholds without retraining. Experimental results with noisy training data on industrial designs demonstrate that LGC-Net achieves significantly better accuracy of DRV density prediction than prior arts.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions\",\"authors\":\"Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, Gi-Joon Nam\",\"doi\":\"10.1145/3508352.3549347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a promising approach to early DRV (Design Rule Violation) prediction. However, non-deterministic parallel routing hampers model training and degrades prediction accuracy. In this work, we propose a stochastic approach, called LGC-Net, to solve this problem. In this approach, we develop new techniques of Gaussian random field layer and focal likelihood loss function to seamlessly integrate Log Gaussian Cox process with deep learning. This approach provides not only statistical regression results but also classification ones with different thresholds without retraining. Experimental results with noisy training data on industrial designs demonstrate that LGC-Net achieves significantly better accuracy of DRV density prediction than prior arts.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions
Deep learning is a promising approach to early DRV (Design Rule Violation) prediction. However, non-deterministic parallel routing hampers model training and degrades prediction accuracy. In this work, we propose a stochastic approach, called LGC-Net, to solve this problem. In this approach, we develop new techniques of Gaussian random field layer and focal likelihood loss function to seamlessly integrate Log Gaussian Cox process with deep learning. This approach provides not only statistical regression results but also classification ones with different thresholds without retraining. Experimental results with noisy training data on industrial designs demonstrate that LGC-Net achieves significantly better accuracy of DRV density prediction than prior arts.