{"title":"最大流量算法在FPGA调试期间最大的可观察性","authors":"Eddie Hung, Al-Shahna Jamal, S. Wilton","doi":"10.1109/FPT.2013.6718324","DOIUrl":null,"url":null,"abstract":"Due to the ever-increasing density and complexity of integrated circuits, FPGA prototyping has become a necessary part of the design process. To enhance observability into these devices, designers commonly insert trace-buffers to record and expose the values on a small subset of internal signals during live operation to help root-cause errors. For dense designs, routing congestion will restrict the number of signals that can be connected to these trace-buffers. In this work, we apply optimal network flow graph algorithms, a well studied technique, to the problem of transporting circuit signals to embedded trace-buffers for observation. Specifically, we apply a minimum cost maximum flow algorithm to gain maximum signal observability with minimum total wirelength. We showcase our techniques on both theoretical FPGA architectures using VPR, and with a Xilinx Virtex6 device, finding that for the latter, over 99.6% of all spare RAM inputs can be reclaimed for tracing across four large benchmarks.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Maximum flow algorithms for maximum observability during FPGA debug\",\"authors\":\"Eddie Hung, Al-Shahna Jamal, S. Wilton\",\"doi\":\"10.1109/FPT.2013.6718324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the ever-increasing density and complexity of integrated circuits, FPGA prototyping has become a necessary part of the design process. To enhance observability into these devices, designers commonly insert trace-buffers to record and expose the values on a small subset of internal signals during live operation to help root-cause errors. For dense designs, routing congestion will restrict the number of signals that can be connected to these trace-buffers. In this work, we apply optimal network flow graph algorithms, a well studied technique, to the problem of transporting circuit signals to embedded trace-buffers for observation. Specifically, we apply a minimum cost maximum flow algorithm to gain maximum signal observability with minimum total wirelength. We showcase our techniques on both theoretical FPGA architectures using VPR, and with a Xilinx Virtex6 device, finding that for the latter, over 99.6% of all spare RAM inputs can be reclaimed for tracing across four large benchmarks.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum flow algorithms for maximum observability during FPGA debug
Due to the ever-increasing density and complexity of integrated circuits, FPGA prototyping has become a necessary part of the design process. To enhance observability into these devices, designers commonly insert trace-buffers to record and expose the values on a small subset of internal signals during live operation to help root-cause errors. For dense designs, routing congestion will restrict the number of signals that can be connected to these trace-buffers. In this work, we apply optimal network flow graph algorithms, a well studied technique, to the problem of transporting circuit signals to embedded trace-buffers for observation. Specifically, we apply a minimum cost maximum flow algorithm to gain maximum signal observability with minimum total wirelength. We showcase our techniques on both theoretical FPGA architectures using VPR, and with a Xilinx Virtex6 device, finding that for the latter, over 99.6% of all spare RAM inputs can be reclaimed for tracing across four large benchmarks.