基于鲁棒神经网络的下行LTE MIMO-OFDM系统高选择性信道估计

A. Omri, R. Hamila, M. Hasna, R. Bouallègue, H. Chamkhia
{"title":"基于鲁棒神经网络的下行LTE MIMO-OFDM系统高选择性信道估计","authors":"A. Omri, R. Hamila, M. Hasna, R. Bouallègue, H. Chamkhia","doi":"10.5383/JUSPN.02.01.004","DOIUrl":null,"url":null,"abstract":"In this contribution, we propose a robust highly se lective channel estimator for downlink Long Term Ev olution (LTE) multiple-input multiple-output (MIMO) orthogonal fr equency division multiplexing (OFDM) system using n eural network. The new method uses the information provid ed by the reference signals to estimate the total f requency response of the channel in two phases. In the first phase, the proposed method learns to adapt to the channel variations, and in the second phase it predicts the channel par ameters. The performance of the estimation method i n terms of complexity and quality is confirmed by theoretical analysis and simulations in an LTE/OFDMA transmissi on system. The performances of the proposed channel estimator are compared with those of least square (LS), decis ion feedback and modified Wiener methods. The simulation results show that the proposed estimator performs better t han he above estimators and it is more robust at high speed mobi lity.","PeriodicalId":376249,"journal":{"name":"J. Ubiquitous Syst. Pervasive Networks","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Estimation of highly Selective Channels for Downlink LTE MIMO-OFDM System by a Robust Neural Network\",\"authors\":\"A. Omri, R. Hamila, M. Hasna, R. Bouallègue, H. Chamkhia\",\"doi\":\"10.5383/JUSPN.02.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we propose a robust highly se lective channel estimator for downlink Long Term Ev olution (LTE) multiple-input multiple-output (MIMO) orthogonal fr equency division multiplexing (OFDM) system using n eural network. The new method uses the information provid ed by the reference signals to estimate the total f requency response of the channel in two phases. In the first phase, the proposed method learns to adapt to the channel variations, and in the second phase it predicts the channel par ameters. The performance of the estimation method i n terms of complexity and quality is confirmed by theoretical analysis and simulations in an LTE/OFDMA transmissi on system. The performances of the proposed channel estimator are compared with those of least square (LS), decis ion feedback and modified Wiener methods. The simulation results show that the proposed estimator performs better t han he above estimators and it is more robust at high speed mobi lity.\",\"PeriodicalId\":376249,\"journal\":{\"name\":\"J. Ubiquitous Syst. Pervasive Networks\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Ubiquitous Syst. Pervasive Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5383/JUSPN.02.01.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Ubiquitous Syst. Pervasive Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5383/JUSPN.02.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在这篇贡献中,我们提出了一个鲁棒的高选择性信道估计器,用于下行链路长期演进(LTE)多输入多输出(MIMO)正交频分复用(OFDM)系统,使用神经网络。该方法利用参考信号提供的信息来估计信道两相的总频率响应。该方法在第一阶段学习适应信道的变化,在第二阶段预测信道参数。理论分析和在LTE/OFDMA传输系统中的仿真验证了该估计方法在复杂度和质量方面的性能。将该信道估计器的性能与最小二乘、决策反馈和改进的维纳方法进行了比较。仿真结果表明,该估计器的性能优于上述估计器,并且在高速移动时具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of highly Selective Channels for Downlink LTE MIMO-OFDM System by a Robust Neural Network
In this contribution, we propose a robust highly se lective channel estimator for downlink Long Term Ev olution (LTE) multiple-input multiple-output (MIMO) orthogonal fr equency division multiplexing (OFDM) system using n eural network. The new method uses the information provid ed by the reference signals to estimate the total f requency response of the channel in two phases. In the first phase, the proposed method learns to adapt to the channel variations, and in the second phase it predicts the channel par ameters. The performance of the estimation method i n terms of complexity and quality is confirmed by theoretical analysis and simulations in an LTE/OFDMA transmissi on system. The performances of the proposed channel estimator are compared with those of least square (LS), decis ion feedback and modified Wiener methods. The simulation results show that the proposed estimator performs better t han he above estimators and it is more robust at high speed mobi lity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimized Kappa Architecture for IoT Data Management in Smart Farming Towards Low-Cost IoT and LPWAN-Based Flood Forecast and Monitoring System Towards Performance of NLP Transformers on URL-Based Phishing Detection for Mobile Devices The way it made me feel - Creating and evaluating an in-app feedback tool for mobile apps Fire Risk Prediction Using Cloud-based Weather Data Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1