{"title":"基于最小描述长度原理的复合高斯-马尔可夫随机场自适应边缘检测","authors":"M. Figueiredo, J. Leitão","doi":"10.1109/WITS.1994.513891","DOIUrl":null,"url":null,"abstract":"Edge location in compound Gauss-Markov random fields (CGMRF) is formulated as a parameter estimation problem. Since the number of parameters is unknown, a minimum-description-length (MDL) criterion is proposed for image restoration based on the CGMRF model.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive edge detection in compound Gauss-Markov random fields using the minimum description length principle\",\"authors\":\"M. Figueiredo, J. Leitão\",\"doi\":\"10.1109/WITS.1994.513891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge location in compound Gauss-Markov random fields (CGMRF) is formulated as a parameter estimation problem. Since the number of parameters is unknown, a minimum-description-length (MDL) criterion is proposed for image restoration based on the CGMRF model.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive edge detection in compound Gauss-Markov random fields using the minimum description length principle
Edge location in compound Gauss-Markov random fields (CGMRF) is formulated as a parameter estimation problem. Since the number of parameters is unknown, a minimum-description-length (MDL) criterion is proposed for image restoration based on the CGMRF model.