改进使用肤色信息的人脸验证

S. Marcel, Samy Bengio
{"title":"改进使用肤色信息的人脸验证","authors":"S. Marcel, Samy Bengio","doi":"10.1109/ICPR.2002.1048318","DOIUrl":null,"url":null,"abstract":"The performance of face verification systems has steadily improved over the last few years, mainly focusing on models rather than on feature processing. State-of-the-art methods often use the gray-scale face image as input. We propose to use an additional feature of the face image: the skin color The new feature set is tested on a benchmark database, namely XM2VTS, using a simple discriminant artificial neural network. Results show that the skin color information improves the performance.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Improving face verification using skin color information\",\"authors\":\"S. Marcel, Samy Bengio\",\"doi\":\"10.1109/ICPR.2002.1048318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of face verification systems has steadily improved over the last few years, mainly focusing on models rather than on feature processing. State-of-the-art methods often use the gray-scale face image as input. We propose to use an additional feature of the face image: the skin color The new feature set is tested on a benchmark database, namely XM2VTS, using a simple discriminant artificial neural network. Results show that the skin color information improves the performance.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在过去的几年里,人脸验证系统的性能稳步提高,主要集中在模型而不是特征处理上。最先进的方法通常使用灰度人脸图像作为输入。我们建议使用人脸图像的附加特征:肤色。新的特征集在一个基准数据库XM2VTS上进行测试,使用简单的判别人工神经网络。结果表明,肤色信息提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving face verification using skin color information
The performance of face verification systems has steadily improved over the last few years, mainly focusing on models rather than on feature processing. State-of-the-art methods often use the gray-scale face image as input. We propose to use an additional feature of the face image: the skin color The new feature set is tested on a benchmark database, namely XM2VTS, using a simple discriminant artificial neural network. Results show that the skin color information improves the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1