{"title":"UniBA @ KIPoS:词性标注的混合方法(短文)","authors":"Giovanni Luca Izzi, S. Ferilli","doi":"10.4000/BOOKS.AACCADEMIA.7773","DOIUrl":null,"url":null,"abstract":"English. The Part of Speech tagging operation is becoming increasingly important as it represents the starting point for other high-level operations such as Speech Recognition, Machine Translation, Parsing and Information Retrieval. Although the accuracy of state-of-the-art POS-taggers reach a high level of accuracy (around 96-97%) it cannot yet be considered a solved problem because there are many variables to take into account. For example, most of these systems use lexical knowledge to assign a tag to unknown words. The task solution proposed in this work is based on a hybrid tagger, which doesn’t use any prior lexical knowledge, consisting of two different types of POS-taggers used sequentially: HMM tagger and RDRPOSTagger [ (Nguyen et al., 2014), (Nguyen et al., 2016)]. We trained the hybrid model using the Development set and the combination of Development and Silver sets. The results have shown an accuracy of 0,8114 and 0,8100 respectively for the main task. Italiano. L’operazione di Part of Speech tagging sta diventando sempre più importante in quanto rappresenta il punto di partenza per altre operazioni di alto livello come Speech Recognition, Machine Translation, Parsing e Information Retrieval. Sebbene l’accuratezza dei POS tagger allo stato dell’arte raggiunga un alto livello di accuratezza (intorno al 9697%), esso non può ancora essere considerato un problema risolto perché ci Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). sono molte variabili da tenere in considerazione. Ad esempio, la maggior parte di questi sistemi utilizza della conoscenza linguistica per assegnare un tag alle parole sconosciute. La soluzione proposta in questo lavoro si basa su un tagger ibrido, che non utilizza alcuna conoscenza linguistica pregressa, costituito da due diversi tipi di POS-tagger usati in sequenza: HMM tagger e RDRPOSTagger [ (Nguyen et al., 2014), (Nguyen et al., 2016)]. Abbiamo addestrato il modello ibrido utilizzando il Development Set e la combinazione di Silver e Development Sets. I risultati hanno mostrato un’accuratezza pari a 0,8114 e 0,8100 rispettivamente per","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UniBA @ KIPoS: A Hybrid Approach for Part-of-Speech Tagging (short paper)\",\"authors\":\"Giovanni Luca Izzi, S. Ferilli\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. The Part of Speech tagging operation is becoming increasingly important as it represents the starting point for other high-level operations such as Speech Recognition, Machine Translation, Parsing and Information Retrieval. Although the accuracy of state-of-the-art POS-taggers reach a high level of accuracy (around 96-97%) it cannot yet be considered a solved problem because there are many variables to take into account. For example, most of these systems use lexical knowledge to assign a tag to unknown words. The task solution proposed in this work is based on a hybrid tagger, which doesn’t use any prior lexical knowledge, consisting of two different types of POS-taggers used sequentially: HMM tagger and RDRPOSTagger [ (Nguyen et al., 2014), (Nguyen et al., 2016)]. We trained the hybrid model using the Development set and the combination of Development and Silver sets. The results have shown an accuracy of 0,8114 and 0,8100 respectively for the main task. Italiano. L’operazione di Part of Speech tagging sta diventando sempre più importante in quanto rappresenta il punto di partenza per altre operazioni di alto livello come Speech Recognition, Machine Translation, Parsing e Information Retrieval. Sebbene l’accuratezza dei POS tagger allo stato dell’arte raggiunga un alto livello di accuratezza (intorno al 9697%), esso non può ancora essere considerato un problema risolto perché ci Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). sono molte variabili da tenere in considerazione. Ad esempio, la maggior parte di questi sistemi utilizza della conoscenza linguistica per assegnare un tag alle parole sconosciute. La soluzione proposta in questo lavoro si basa su un tagger ibrido, che non utilizza alcuna conoscenza linguistica pregressa, costituito da due diversi tipi di POS-tagger usati in sequenza: HMM tagger e RDRPOSTagger [ (Nguyen et al., 2014), (Nguyen et al., 2016)]. Abbiamo addestrato il modello ibrido utilizzando il Development Set e la combinazione di Silver e Development Sets. I risultati hanno mostrato un’accuratezza pari a 0,8114 e 0,8100 rispettivamente per\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
UniBA @ KIPoS: A Hybrid Approach for Part-of-Speech Tagging (short paper)
English. The Part of Speech tagging operation is becoming increasingly important as it represents the starting point for other high-level operations such as Speech Recognition, Machine Translation, Parsing and Information Retrieval. Although the accuracy of state-of-the-art POS-taggers reach a high level of accuracy (around 96-97%) it cannot yet be considered a solved problem because there are many variables to take into account. For example, most of these systems use lexical knowledge to assign a tag to unknown words. The task solution proposed in this work is based on a hybrid tagger, which doesn’t use any prior lexical knowledge, consisting of two different types of POS-taggers used sequentially: HMM tagger and RDRPOSTagger [ (Nguyen et al., 2014), (Nguyen et al., 2016)]. We trained the hybrid model using the Development set and the combination of Development and Silver sets. The results have shown an accuracy of 0,8114 and 0,8100 respectively for the main task. Italiano. L’operazione di Part of Speech tagging sta diventando sempre più importante in quanto rappresenta il punto di partenza per altre operazioni di alto livello come Speech Recognition, Machine Translation, Parsing e Information Retrieval. Sebbene l’accuratezza dei POS tagger allo stato dell’arte raggiunga un alto livello di accuratezza (intorno al 9697%), esso non può ancora essere considerato un problema risolto perché ci Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). sono molte variabili da tenere in considerazione. Ad esempio, la maggior parte di questi sistemi utilizza della conoscenza linguistica per assegnare un tag alle parole sconosciute. La soluzione proposta in questo lavoro si basa su un tagger ibrido, che non utilizza alcuna conoscenza linguistica pregressa, costituito da due diversi tipi di POS-tagger usati in sequenza: HMM tagger e RDRPOSTagger [ (Nguyen et al., 2014), (Nguyen et al., 2016)]. Abbiamo addestrato il modello ibrido utilizzando il Development Set e la combinazione di Silver e Development Sets. I risultati hanno mostrato un’accuratezza pari a 0,8114 e 0,8100 rispettivamente per