铁掺杂钛/聚苯胺复合材料:酸性介质中析氢反应的高效电催化剂

Suman Lahkar, Richa Brahma, S. Dolui
{"title":"铁掺杂钛/聚苯胺复合材料:酸性介质中析氢反应的高效电催化剂","authors":"Suman Lahkar, Richa Brahma, S. Dolui","doi":"10.21926/cr.2301002","DOIUrl":null,"url":null,"abstract":"The development of noble metal-free catalyst for hydrogen evolution reaction (HER) is the primary challenge in fuel production to replace fossil fuels. Here, we have synthesized Fe-doped TiO2/PANI nanocomposite via facile in situ polymerization method and studied its electrocatalytic activity towards HER. The composite catalyzes HER efficiently with an overpotential value of -180 mV vs. RHE in 0.5 M H2SO4 solution to achieve the current density of 10 mA cm-2 and also possesses unique stability of 8 h. However, a unique balance of PANI content must be maintained to draw the maximum efficiency from the conjuncture of active Fe-doped TiO2 particles and PANI. The catalytic efficiency of PANI is upgraded by interfacial electronic coupling with Fe-doped TiO2, due to which the antibonding states of nitrogen atom got occupied, leading to a weaker interaction between adsorbate hydrogen and catalyst surface and enhancing the rapid desorption of H2.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron Doped Titania/Polyaniline Composite: An Efficient Electrocatalyst for Hydrogen Evolution Reaction in Acidic Medium\",\"authors\":\"Suman Lahkar, Richa Brahma, S. Dolui\",\"doi\":\"10.21926/cr.2301002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of noble metal-free catalyst for hydrogen evolution reaction (HER) is the primary challenge in fuel production to replace fossil fuels. Here, we have synthesized Fe-doped TiO2/PANI nanocomposite via facile in situ polymerization method and studied its electrocatalytic activity towards HER. The composite catalyzes HER efficiently with an overpotential value of -180 mV vs. RHE in 0.5 M H2SO4 solution to achieve the current density of 10 mA cm-2 and also possesses unique stability of 8 h. However, a unique balance of PANI content must be maintained to draw the maximum efficiency from the conjuncture of active Fe-doped TiO2 particles and PANI. The catalytic efficiency of PANI is upgraded by interfacial electronic coupling with Fe-doped TiO2, due to which the antibonding states of nitrogen atom got occupied, leading to a weaker interaction between adsorbate hydrogen and catalyst surface and enhancing the rapid desorption of H2.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2301002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2301002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无贵金属析氢催化剂的开发是燃料生产中替代化石燃料的首要挑战。本文采用原位聚合法合成了fe掺杂TiO2/PANI纳米复合材料,并研究了其对HER的电催化活性。复合材料在0.5 M H2SO4溶液中高效催化HER,过电位值为-180 mV vs. RHE,电流密度为10 mA cm-2,并具有独特的8 h稳定性。然而,必须保持独特的PANI含量平衡,才能从活性fe掺杂TiO2颗粒和PANI的结合中获得最大的效率。通过与fe掺杂TiO2的界面电子偶联,提高了PANI的催化效率,从而占据了氮原子的反键态,使得吸附氢与催化剂表面的相互作用减弱,增强了H2的快速脱附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron Doped Titania/Polyaniline Composite: An Efficient Electrocatalyst for Hydrogen Evolution Reaction in Acidic Medium
The development of noble metal-free catalyst for hydrogen evolution reaction (HER) is the primary challenge in fuel production to replace fossil fuels. Here, we have synthesized Fe-doped TiO2/PANI nanocomposite via facile in situ polymerization method and studied its electrocatalytic activity towards HER. The composite catalyzes HER efficiently with an overpotential value of -180 mV vs. RHE in 0.5 M H2SO4 solution to achieve the current density of 10 mA cm-2 and also possesses unique stability of 8 h. However, a unique balance of PANI content must be maintained to draw the maximum efficiency from the conjuncture of active Fe-doped TiO2 particles and PANI. The catalytic efficiency of PANI is upgraded by interfacial electronic coupling with Fe-doped TiO2, due to which the antibonding states of nitrogen atom got occupied, leading to a weaker interaction between adsorbate hydrogen and catalyst surface and enhancing the rapid desorption of H2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Photogeneration of Singlet Oxygen and High Photocatalytic and Antibacterial Activities of Porous Mn-Doped ZnO-ZrO2 Nanocomposites Determination of Reflectance Spectra and Colorimetry of Titanium and Tungsten Oxides Obtained by Microwave-assisted Hydrothermal Synthesis A Remarkable Pt Doped CNT Catalyst as a Double Functional Material: Its Application for Hydrogen Production and Supercapacitor NaY Zeolite Synthesis from Vermiculite and Modification with Surfactant Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1