用于造血细胞分类的空间成熟度回归

Philipp Gräbel, Julian Thull, M. Crysandt, B. Klinkhammer, P. Boor, T. Brümmendorf, D. Merhof
{"title":"用于造血细胞分类的空间成熟度回归","authors":"Philipp Gräbel, Julian Thull, M. Crysandt, B. Klinkhammer, P. Boor, T. Brümmendorf, D. Merhof","doi":"10.1109/IPTA54936.2022.9784130","DOIUrl":null,"url":null,"abstract":"In contrast to peripheral blood, cells in bone marrow microscopy images are not only characterized by the cell lineage but also a maturity stage within the lineage. As maturation is a continuous process, the differentiation between various stages falls into the category of (ordinal) regression. In this work, we propose Spatial Maturity Regression - a technique that regularizes the learning process to enforce a sensible positioning of maturity stages in the embedding space. To this end, we propose and evaluate several curve models, target definitions and loss function that incorporate this domain knowledge. We show that the classification F-scores improve up to 2.4 percentage points when enforcing regression targets along learnable curves in the embedding space. This technique further allows visualization of individual predictions by providing the projected position along the learnt curve.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Maturity Regression for the Classification of Hematopoietic Cells\",\"authors\":\"Philipp Gräbel, Julian Thull, M. Crysandt, B. Klinkhammer, P. Boor, T. Brümmendorf, D. Merhof\",\"doi\":\"10.1109/IPTA54936.2022.9784130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contrast to peripheral blood, cells in bone marrow microscopy images are not only characterized by the cell lineage but also a maturity stage within the lineage. As maturation is a continuous process, the differentiation between various stages falls into the category of (ordinal) regression. In this work, we propose Spatial Maturity Regression - a technique that regularizes the learning process to enforce a sensible positioning of maturity stages in the embedding space. To this end, we propose and evaluate several curve models, target definitions and loss function that incorporate this domain knowledge. We show that the classification F-scores improve up to 2.4 percentage points when enforcing regression targets along learnable curves in the embedding space. This technique further allows visualization of individual predictions by providing the projected position along the learnt curve.\",\"PeriodicalId\":381729,\"journal\":{\"name\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA54936.2022.9784130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与外周血不同,骨髓显微镜图像中的细胞不仅具有细胞谱系的特征,而且具有谱系内的成熟阶段。由于成熟是一个连续的过程,不同阶段之间的分化属于(有序)回归的范畴。在这项工作中,我们提出了空间成熟度回归-一种规范学习过程的技术,以强制在嵌入空间中对成熟度阶段进行合理定位。为此,我们提出并评估了几种包含该领域知识的曲线模型、目标定义和损失函数。我们表明,当在嵌入空间中沿可学习曲线实施回归目标时,分类f分数提高了2.4个百分点。这种技术通过提供学习曲线上的投影位置,进一步实现了个体预测的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Maturity Regression for the Classification of Hematopoietic Cells
In contrast to peripheral blood, cells in bone marrow microscopy images are not only characterized by the cell lineage but also a maturity stage within the lineage. As maturation is a continuous process, the differentiation between various stages falls into the category of (ordinal) regression. In this work, we propose Spatial Maturity Regression - a technique that regularizes the learning process to enforce a sensible positioning of maturity stages in the embedding space. To this end, we propose and evaluate several curve models, target definitions and loss function that incorporate this domain knowledge. We show that the classification F-scores improve up to 2.4 percentage points when enforcing regression targets along learnable curves in the embedding space. This technique further allows visualization of individual predictions by providing the projected position along the learnt curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Session 3: Visual Computing in Digital Humanities Complex Texture Features Learned by Applying Randomized Neural Network on Graphs AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images Towards Fast and Accurate Intimate Contact Recognition through Video Analysis Draco-Based Selective Crypto-Compression Method of 3D objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1