基于神经网络的无损数据压缩方法

Yang Guowei, Li Zhengxi, Tu Xuyan
{"title":"基于神经网络的无损数据压缩方法","authors":"Yang Guowei, Li Zhengxi, Tu Xuyan","doi":"10.1109/ICCT.2003.1209899","DOIUrl":null,"url":null,"abstract":"No lossless data compression method based on neural network has been found before. A lossless compression method based on BP network for the long character-string of 0 and 1 is given by establishing specific mapping Y and specific integer function and with the non-linear approximation capability of concrete three-layer BP network in this paper. The compression and decompression algorithms of the lossless compression method are provided. Experiments show that the compression ratio of the lossless compression method is usually around 16/11 and the method can effectively compress the data which have been compressed by Huffman coding, arithmetic coding or dictionary coding.","PeriodicalId":237858,"journal":{"name":"International Conference on Communication Technology Proceedings, 2003. ICCT 2003.","volume":"119 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lossless data compression methods based on neural network\",\"authors\":\"Yang Guowei, Li Zhengxi, Tu Xuyan\",\"doi\":\"10.1109/ICCT.2003.1209899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"No lossless data compression method based on neural network has been found before. A lossless compression method based on BP network for the long character-string of 0 and 1 is given by establishing specific mapping Y and specific integer function and with the non-linear approximation capability of concrete three-layer BP network in this paper. The compression and decompression algorithms of the lossless compression method are provided. Experiments show that the compression ratio of the lossless compression method is usually around 16/11 and the method can effectively compress the data which have been compressed by Huffman coding, arithmetic coding or dictionary coding.\",\"PeriodicalId\":237858,\"journal\":{\"name\":\"International Conference on Communication Technology Proceedings, 2003. ICCT 2003.\",\"volume\":\"119 16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Communication Technology Proceedings, 2003. ICCT 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2003.1209899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Communication Technology Proceedings, 2003. ICCT 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2003.1209899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于神经网络的数据无损压缩方法目前还没有发现。本文通过建立特定的映射Y和特定的整数函数,利用具体的三层BP网络的非线性逼近能力,给出了一种基于BP网络的0和1长字符串无损压缩方法。给出了无损压缩方法的压缩和解压缩算法。实验表明,无损压缩方法的压缩比通常在16/11左右,可以有效地压缩经过霍夫曼编码、算术编码或字典编码压缩过的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossless data compression methods based on neural network
No lossless data compression method based on neural network has been found before. A lossless compression method based on BP network for the long character-string of 0 and 1 is given by establishing specific mapping Y and specific integer function and with the non-linear approximation capability of concrete three-layer BP network in this paper. The compression and decompression algorithms of the lossless compression method are provided. Experiments show that the compression ratio of the lossless compression method is usually around 16/11 and the method can effectively compress the data which have been compressed by Huffman coding, arithmetic coding or dictionary coding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multicast congestion control scheme for heterogeneous receivers A novel automated fault identification approach in computer networks based on graph theory Blind channel estimation algorithm of uplink for MC-CDMA system A new approach for carrier frequency offset estimation in OFDM communication system Proactive earliest due-date scheduling in wireless packet networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1