复杂对象引用表达式的概率模型

Kotaro Funakoshi, Philipp Spanger, Mikio Nakano, T. Tokunaga
{"title":"复杂对象引用表达式的概率模型","authors":"Kotaro Funakoshi, Philipp Spanger, Mikio Nakano, T. Tokunaga","doi":"10.3115/1610195.1610229","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic model both for generation and understanding of referring expressions. This model introduces the concept of parts of objects, modelling the necessity to deal with the characteristics of separate parts of an object in the referring process. This was ignored or implicit in previous literature. Integrating this concept into a probabilistic formulation, the model captures human characteristics of visual perception and some type of pragmatic implicature in referring expressions. Developing this kind of model is critical to deal with more complex domains in the future. As a first step in our research, we validate the model with the TUNA corpus to show that it includes conventional domain modeling as a subset.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Probabilistic Model of Referring Expressions for Complex Objects\",\"authors\":\"Kotaro Funakoshi, Philipp Spanger, Mikio Nakano, T. Tokunaga\",\"doi\":\"10.3115/1610195.1610229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a probabilistic model both for generation and understanding of referring expressions. This model introduces the concept of parts of objects, modelling the necessity to deal with the characteristics of separate parts of an object in the referring process. This was ignored or implicit in previous literature. Integrating this concept into a probabilistic formulation, the model captures human characteristics of visual perception and some type of pragmatic implicature in referring expressions. Developing this kind of model is critical to deal with more complex domains in the future. As a first step in our research, we validate the model with the TUNA corpus to show that it includes conventional domain modeling as a subset.\",\"PeriodicalId\":307841,\"journal\":{\"name\":\"European Workshop on Natural Language Generation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1610195.1610229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一个用于引用表达式生成和理解的概率模型。该模型引入了对象部件的概念,在建模参考过程中需要处理对象各部件的特性。这在以前的文献中被忽略或隐含。将这一概念整合到一个概率公式中,该模型捕捉到了人类的视觉感知特征和指称表达的某种语用含义。开发这种模型对于将来处理更复杂的领域至关重要。作为我们研究的第一步,我们用TUNA语料库验证了该模型,以表明它将传统的领域建模作为一个子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Probabilistic Model of Referring Expressions for Complex Objects
This paper presents a probabilistic model both for generation and understanding of referring expressions. This model introduces the concept of parts of objects, modelling the necessity to deal with the characteristics of separate parts of an object in the referring process. This was ignored or implicit in previous literature. Integrating this concept into a probabilistic formulation, the model captures human characteristics of visual perception and some type of pragmatic implicature in referring expressions. Developing this kind of model is critical to deal with more complex domains in the future. As a first step in our research, we validate the model with the TUNA corpus to show that it includes conventional domain modeling as a subset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural Language Generation from Pictographs A Personal Storytelling about Your Favorite Data Topic Transition Strategies for an Information-Giving Agent Sentence Ordering in Electronic Navigational Chart Companion Text Generation Generating Récit from Sensor Data: Evaluation of a Task Model for Story Planning and Preliminary Experiments with GPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1