基于正交遗传算法的微观交通流仿真模型参数标定方法

Yong Qin, Honghui Dong, Qing Zhang, Yanfang Yang
{"title":"基于正交遗传算法的微观交通流仿真模型参数标定方法","authors":"Yong Qin, Honghui Dong, Qing Zhang, Yanfang Yang","doi":"10.18293/DMS2016-047","DOIUrl":null,"url":null,"abstract":"Traffic microscopic traffic simulation models have become extensively used in both transportation operations and management analyses, which are very useful in reflecting the dynamic nature of transportation system in a stochastic manner. As far as the microscopic traffic flow simulation users are concerned, the one of the major concerns would be the appropriate calibration of the simulation models. In this paper a parameter calibration method of microscopic traffic flow simulation models based on orthogonal genetic algorithm is presented. In order to improve the capacity of locating a possible solution in solution space, the proposed method incorporates the orthogonal experimental design method into the genetic algorithm. The proposed method is applied to an arterial section of Ronghua Road in Beijing. Through comparing with the parameter calibration method based on genetic algorithm, the advantage of the proposed method is shown. Keywords-Microscopic traffic flow simulation model; Parameter calibration; Orthogonal genetic algorithm; VISSIM","PeriodicalId":297195,"journal":{"name":"J. Vis. Lang. Sentient Syst.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parameter Calibration Method of Microscopic Traffic Flow Simulation Models based on Orthogonal Genetic Algorithm\",\"authors\":\"Yong Qin, Honghui Dong, Qing Zhang, Yanfang Yang\",\"doi\":\"10.18293/DMS2016-047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic microscopic traffic simulation models have become extensively used in both transportation operations and management analyses, which are very useful in reflecting the dynamic nature of transportation system in a stochastic manner. As far as the microscopic traffic flow simulation users are concerned, the one of the major concerns would be the appropriate calibration of the simulation models. In this paper a parameter calibration method of microscopic traffic flow simulation models based on orthogonal genetic algorithm is presented. In order to improve the capacity of locating a possible solution in solution space, the proposed method incorporates the orthogonal experimental design method into the genetic algorithm. The proposed method is applied to an arterial section of Ronghua Road in Beijing. Through comparing with the parameter calibration method based on genetic algorithm, the advantage of the proposed method is shown. Keywords-Microscopic traffic flow simulation model; Parameter calibration; Orthogonal genetic algorithm; VISSIM\",\"PeriodicalId\":297195,\"journal\":{\"name\":\"J. Vis. Lang. Sentient Syst.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Vis. Lang. Sentient Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18293/DMS2016-047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Vis. Lang. Sentient Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18293/DMS2016-047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

交通微观交通仿真模型在交通运行和管理分析中得到了广泛的应用,它能以随机的方式反映交通系统的动态性。对于微观交通流模拟用户而言,模拟模型的适当校准是主要关注的问题之一。提出了一种基于正交遗传算法的微观交通流仿真模型参数标定方法。为了提高在解空间中寻找可能解的能力,该方法将正交实验设计方法引入到遗传算法中。并将该方法应用于北京市荣华路某主干道路段。通过与基于遗传算法的参数标定方法的比较,说明了该方法的优越性。关键词:微观交通流仿真模型;参数标定;正交遗传算法;VISSIM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Calibration Method of Microscopic Traffic Flow Simulation Models based on Orthogonal Genetic Algorithm
Traffic microscopic traffic simulation models have become extensively used in both transportation operations and management analyses, which are very useful in reflecting the dynamic nature of transportation system in a stochastic manner. As far as the microscopic traffic flow simulation users are concerned, the one of the major concerns would be the appropriate calibration of the simulation models. In this paper a parameter calibration method of microscopic traffic flow simulation models based on orthogonal genetic algorithm is presented. In order to improve the capacity of locating a possible solution in solution space, the proposed method incorporates the orthogonal experimental design method into the genetic algorithm. The proposed method is applied to an arterial section of Ronghua Road in Beijing. Through comparing with the parameter calibration method based on genetic algorithm, the advantage of the proposed method is shown. Keywords-Microscopic traffic flow simulation model; Parameter calibration; Orthogonal genetic algorithm; VISSIM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Image Datasets with Unrestrained Emotional Data: A Study with Users A Visual Debugging Aid based upon Discriminative Graph Mining Smart City Control Room Dashboards: Big Data Infrastructure, from data to decision support Dominant Colors as Image Content Descriptors: A Study with Users Spider Diagrams with Absence: Inference Rules for Clutter Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1