手写体词检索中的可分性与原型性

J. V. Oosten, Lambert Schomaker
{"title":"手写体词检索中的可分性与原型性","authors":"J. V. Oosten, Lambert Schomaker","doi":"10.1109/ICFHR.2012.269","DOIUrl":null,"url":null,"abstract":"User appreciation of a word-image retrieval system is based on the quality of a hit list for a query. Using support vector machines for ranking in large scale, handwritten document collections, we observed that many hit lists suffered from bad instances in the top ranks. An analysis of this problem revealed that two functions needed to be optimised concerning both separability and prototypicality. By ranking images in two stages, the number of distracting images is reduced, making the method very convenient for massive scale, continuously trainable retrieval engines. Instead of cumbersome SVM training, we present a nearest-centroid method and show that precision improvements of up to 35 percentage points can be achieved, yielding up to 100% precision in data sets with a large amount of instances, while maintaining high recall performances.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"88 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Separability versus Prototypicality in Handwritten Word Retrieval\",\"authors\":\"J. V. Oosten, Lambert Schomaker\",\"doi\":\"10.1109/ICFHR.2012.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User appreciation of a word-image retrieval system is based on the quality of a hit list for a query. Using support vector machines for ranking in large scale, handwritten document collections, we observed that many hit lists suffered from bad instances in the top ranks. An analysis of this problem revealed that two functions needed to be optimised concerning both separability and prototypicality. By ranking images in two stages, the number of distracting images is reduced, making the method very convenient for massive scale, continuously trainable retrieval engines. Instead of cumbersome SVM training, we present a nearest-centroid method and show that precision improvements of up to 35 percentage points can be achieved, yielding up to 100% precision in data sets with a large amount of instances, while maintaining high recall performances.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"88 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

用户对单词图像检索系统的评价是基于查询命中列表的质量。使用支持向量机对大规模的手写文档集合进行排名,我们观察到许多热门列表在排名靠前的位置都存在不良实例。对这个问题的分析表明,两个功能需要在可分离性和原型性方面进行优化。通过分两个阶段对图像进行排序,减少了干扰图像的数量,使该方法非常方便于大规模、连续可训练的检索引擎。代替繁琐的支持向量机训练,我们提出了一种最接近质心的方法,并表明可以实现高达35个百分点的精度提高,在具有大量实例的数据集中产生高达100%的精度,同时保持高召回性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separability versus Prototypicality in Handwritten Word Retrieval
User appreciation of a word-image retrieval system is based on the quality of a hit list for a query. Using support vector machines for ranking in large scale, handwritten document collections, we observed that many hit lists suffered from bad instances in the top ranks. An analysis of this problem revealed that two functions needed to be optimised concerning both separability and prototypicality. By ranking images in two stages, the number of distracting images is reduced, making the method very convenient for massive scale, continuously trainable retrieval engines. Instead of cumbersome SVM training, we present a nearest-centroid method and show that precision improvements of up to 35 percentage points can be achieved, yielding up to 100% precision in data sets with a large amount of instances, while maintaining high recall performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-Line Features Integration for On-Line Handwriting Graphemes Modeling Improvement Analysis of Different Subspace Mixture Models in Handwriting Recognition Structural Learning for Writer Identification in Offline Handwriting A Study of Handwritten Characters by Shape Descriptors: Doping Using the Freeman Code Dynamic Programming Matching with Global Features for Online Character Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1