{"title":"探索pair- hmm前向算法的其他GPU实现","authors":"Shanshan Ren, K. Bertels, Z. Al-Ars","doi":"10.1109/BIBM.2016.7822645","DOIUrl":null,"url":null,"abstract":"In order to handle the massive raw data generated by next generation sequencing (NGS) platforms, GPUs are widely used by many genetic analysis tools to speed up the used algorithms. In this paper, we use GPUs to accelerate the pair-HMMs forward algorithm, which is used to calculate the overall alignment probability in many genomics analysis tools. We firstly evaluate two different implementation methods to accelerate the pair-HMMs forward algorithm according to their effectiveness on GPU platforms. Based on these two methods, we present several implementations of the pair-HMMs forward algorithm. We execute these implementations on the NVIDIA Tesla K40 card using different datasets to compare the performance. Experimental results show that the intra-task implementation has the highest throughput in most cases, achieving pure computational throughput as high as 23.56 GCUPS for synthetic datasets. On a real dataset, the inter-task implementation achieves 4.82× speedup compared with a parallelized software implementation executed on a 20-core POWER8 system.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Exploration of alternative GPU implementations of the pair-HMMs forward algorithm\",\"authors\":\"Shanshan Ren, K. Bertels, Z. Al-Ars\",\"doi\":\"10.1109/BIBM.2016.7822645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to handle the massive raw data generated by next generation sequencing (NGS) platforms, GPUs are widely used by many genetic analysis tools to speed up the used algorithms. In this paper, we use GPUs to accelerate the pair-HMMs forward algorithm, which is used to calculate the overall alignment probability in many genomics analysis tools. We firstly evaluate two different implementation methods to accelerate the pair-HMMs forward algorithm according to their effectiveness on GPU platforms. Based on these two methods, we present several implementations of the pair-HMMs forward algorithm. We execute these implementations on the NVIDIA Tesla K40 card using different datasets to compare the performance. Experimental results show that the intra-task implementation has the highest throughput in most cases, achieving pure computational throughput as high as 23.56 GCUPS for synthetic datasets. On a real dataset, the inter-task implementation achieves 4.82× speedup compared with a parallelized software implementation executed on a 20-core POWER8 system.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
摘要
为了处理下一代测序(NGS)平台产生的大量原始数据,许多遗传分析工具广泛使用gpu来加快所用算法的速度。在本文中,我们使用gpu来加速pair- hmm前向算法,该算法在许多基因组学分析工具中用于计算总体比对概率。首先,我们根据两种不同的实现方法在GPU平台上的有效性,对加速pair- hmm前向算法的两种不同实现方法进行了评估。在这两种方法的基础上,我们给出了对hmm前向算法的几种实现。我们使用不同的数据集在NVIDIA Tesla K40卡上执行这些实现来比较性能。实验结果表明,在大多数情况下,任务内实现具有最高的吞吐量,对于合成数据集,其纯计算吞吐量高达23.56 GCUPS。在真实数据集上,与在20核POWER8系统上执行的并行化软件实现相比,任务间实现实现了4.82倍的加速。
Exploration of alternative GPU implementations of the pair-HMMs forward algorithm
In order to handle the massive raw data generated by next generation sequencing (NGS) platforms, GPUs are widely used by many genetic analysis tools to speed up the used algorithms. In this paper, we use GPUs to accelerate the pair-HMMs forward algorithm, which is used to calculate the overall alignment probability in many genomics analysis tools. We firstly evaluate two different implementation methods to accelerate the pair-HMMs forward algorithm according to their effectiveness on GPU platforms. Based on these two methods, we present several implementations of the pair-HMMs forward algorithm. We execute these implementations on the NVIDIA Tesla K40 card using different datasets to compare the performance. Experimental results show that the intra-task implementation has the highest throughput in most cases, achieving pure computational throughput as high as 23.56 GCUPS for synthetic datasets. On a real dataset, the inter-task implementation achieves 4.82× speedup compared with a parallelized software implementation executed on a 20-core POWER8 system.