交叉光谱场景下的眼周识别

S. S. Behera, Mahesh Gour, Vivek Kanhangad, N. Puhan
{"title":"交叉光谱场景下的眼周识别","authors":"S. S. Behera, Mahesh Gour, Vivek Kanhangad, N. Puhan","doi":"10.1109/BTAS.2017.8272757","DOIUrl":null,"url":null,"abstract":"Periocular recognition has been an active area of research in the past few years. In spite of the advancements made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR) periocular images remains a challenge. In this paper, we propose a method based on illumination normalization of VIS and NIR periocular images. Specifically, the approach involves normalizing the images using the difference of Gaussian (DoG) filtering, followed by the computation of a descriptor that captures structural details in the illumination normalized images using histogram of oriented gradients (HOG). Finally, the feature vectors corresponding to the query and the enrolled image are compared using the cosine similarity metric to generate a matching score. Performance of our algorithm has been evaluated on three publicly available benchmark databases of cross-spectral periocular images. Our approach yields significant improvement in performance over the existing approach.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Periocular recognition in cross-spectral scenario\",\"authors\":\"S. S. Behera, Mahesh Gour, Vivek Kanhangad, N. Puhan\",\"doi\":\"10.1109/BTAS.2017.8272757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periocular recognition has been an active area of research in the past few years. In spite of the advancements made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR) periocular images remains a challenge. In this paper, we propose a method based on illumination normalization of VIS and NIR periocular images. Specifically, the approach involves normalizing the images using the difference of Gaussian (DoG) filtering, followed by the computation of a descriptor that captures structural details in the illumination normalized images using histogram of oriented gradients (HOG). Finally, the feature vectors corresponding to the query and the enrolled image are compared using the cosine similarity metric to generate a matching score. Performance of our algorithm has been evaluated on three publicly available benchmark databases of cross-spectral periocular images. Our approach yields significant improvement in performance over the existing approach.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

眼周识别是近年来研究的一个活跃领域。尽管在这方面取得了一些进展,但可见光(VIS)和近红外(NIR)近眼图像的交叉光谱匹配仍然是一个挑战。本文提出了一种基于照度归一化的VIS和NIR眼周图像检测方法。具体来说,该方法包括使用高斯差分(DoG)滤波对图像进行归一化,然后使用定向梯度直方图(HOG)计算捕获照明归一化图像中的结构细节的描述符。最后,使用余弦相似度度量比较查询和注册图像对应的特征向量以生成匹配分数。我们的算法的性能已经在三个公开可用的交叉光谱眼周图像基准数据库上进行了评估。我们的方法在性能上比现有的方法有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Periocular recognition in cross-spectral scenario
Periocular recognition has been an active area of research in the past few years. In spite of the advancements made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR) periocular images remains a challenge. In this paper, we propose a method based on illumination normalization of VIS and NIR periocular images. Specifically, the approach involves normalizing the images using the difference of Gaussian (DoG) filtering, followed by the computation of a descriptor that captures structural details in the illumination normalized images using histogram of oriented gradients (HOG). Finally, the feature vectors corresponding to the query and the enrolled image are compared using the cosine similarity metric to generate a matching score. Performance of our algorithm has been evaluated on three publicly available benchmark databases of cross-spectral periocular images. Our approach yields significant improvement in performance over the existing approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1