学习PE头,恶意软件检测与最小的领域知识

Edward Raff, Jared Sylvester, Charles K. Nicholas
{"title":"学习PE头,恶意软件检测与最小的领域知识","authors":"Edward Raff, Jared Sylvester, Charles K. Nicholas","doi":"10.1145/3128572.3140442","DOIUrl":null,"url":null,"abstract":"Many efforts have been made to use various forms of domain knowledge in malware detection. Currently there exist two common approaches to malware detection without domain knowledge, namely byte n-grams and strings. In this work we explore the feasibility of applying neural networks to malware detection and feature learning. We do this by restricting ourselves to a minimal amount of domain knowledge in order to extract a portion of the Portable Executable (PE) header. By doing this we show that neural networks can learn from raw bytes without explicit feature construction, and perform even better than a domain knowledge approach that parses the PE header into explicit features.","PeriodicalId":318259,"journal":{"name":"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Learning the PE Header, Malware Detection with Minimal Domain Knowledge\",\"authors\":\"Edward Raff, Jared Sylvester, Charles K. Nicholas\",\"doi\":\"10.1145/3128572.3140442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many efforts have been made to use various forms of domain knowledge in malware detection. Currently there exist two common approaches to malware detection without domain knowledge, namely byte n-grams and strings. In this work we explore the feasibility of applying neural networks to malware detection and feature learning. We do this by restricting ourselves to a minimal amount of domain knowledge in order to extract a portion of the Portable Executable (PE) header. By doing this we show that neural networks can learn from raw bytes without explicit feature construction, and perform even better than a domain knowledge approach that parses the PE header into explicit features.\",\"PeriodicalId\":318259,\"journal\":{\"name\":\"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3128572.3140442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128572.3140442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

在恶意软件检测中使用各种形式的领域知识已经做了很多努力。目前存在两种不需要领域知识的恶意软件检测方法,即字节n-图和字符串。在这项工作中,我们探索了将神经网络应用于恶意软件检测和特征学习的可行性。为了提取可移植可执行文件(PE)头文件的一部分,我们将自己限制在最小的领域知识范围内。通过这样做,我们表明神经网络可以在没有显式特征构建的情况下从原始字节中学习,并且比将PE头解析为显式特征的领域知识方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning the PE Header, Malware Detection with Minimal Domain Knowledge
Many efforts have been made to use various forms of domain knowledge in malware detection. Currently there exist two common approaches to malware detection without domain knowledge, namely byte n-grams and strings. In this work we explore the feasibility of applying neural networks to malware detection and feature learning. We do this by restricting ourselves to a minimal amount of domain knowledge in order to extract a portion of the Portable Executable (PE) header. By doing this we show that neural networks can learn from raw bytes without explicit feature construction, and perform even better than a domain knowledge approach that parses the PE header into explicit features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Deep Learning Session details: Lightning Round Malware Analysis of Imaged Binary Samples by Convolutional Neural Network with Attention Mechanism Generating Look-alike Names For Security Challenges An Early Warning System for Suspicious Accounts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1