基于安全日志的攻击模式挖掘算法

Keyi Li, Yang Li, Jianyi Liu, Ru Zhang, Xi Duan
{"title":"基于安全日志的攻击模式挖掘算法","authors":"Keyi Li, Yang Li, Jianyi Liu, Ru Zhang, Xi Duan","doi":"10.1109/ISI.2017.8004918","DOIUrl":null,"url":null,"abstract":"This paper proposes an attack pattern mining algorithm to extract attack pattern in massive security logs. The improved fuzzy clustering algorithm is used to generate sequence set. Then PrefixSpan is used to mine frequent sequence from the sequence set. The experimental results show that this algorithm can effectively mine the attack pattern, improve the accuracy and generate more valuable attack pattern.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Attack pattern mining algorithm based on security log\",\"authors\":\"Keyi Li, Yang Li, Jianyi Liu, Ru Zhang, Xi Duan\",\"doi\":\"10.1109/ISI.2017.8004918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an attack pattern mining algorithm to extract attack pattern in massive security logs. The improved fuzzy clustering algorithm is used to generate sequence set. Then PrefixSpan is used to mine frequent sequence from the sequence set. The experimental results show that this algorithm can effectively mine the attack pattern, improve the accuracy and generate more valuable attack pattern.\",\"PeriodicalId\":423696,\"journal\":{\"name\":\"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2017.8004918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种从海量安全日志中提取攻击模式的攻击模式挖掘算法。采用改进的模糊聚类算法生成序列集。然后利用PrefixSpan从序列集中挖掘频繁序列。实验结果表明,该算法能够有效地挖掘攻击模式,提高准确率,生成更有价值的攻击模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attack pattern mining algorithm based on security log
This paper proposes an attack pattern mining algorithm to extract attack pattern in massive security logs. The improved fuzzy clustering algorithm is used to generate sequence set. Then PrefixSpan is used to mine frequent sequence from the sequence set. The experimental results show that this algorithm can effectively mine the attack pattern, improve the accuracy and generate more valuable attack pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The dynamics of health sentiments with competitive interactions in social media Phishing detection: A recent intelligent machine learning comparison based on models content and features A framework for digital forensics analysis based on semantic role labeling Alignment-free indexing-first-one hashing with bloom filter integration Assessing medical device vulnerabilities on the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1