iTB-test:一种用于体外筛查传染病的智能图像诊断系统

Marzia Hoque Tania, M. Kaiser, A. Shabut, Kamal Abu-Hassan, M. Mahmud, M. A. Hossain
{"title":"iTB-test:一种用于体外筛查传染病的智能图像诊断系统","authors":"Marzia Hoque Tania, M. Kaiser, A. Shabut, Kamal Abu-Hassan, M. Mahmud, M. A. Hossain","doi":"10.1109/SKIMA57145.2022.10029556","DOIUrl":null,"url":null,"abstract":"This paper performs an investigation into the development of an intelligent image-based automatic in vitro diagnostic system for infectious diseases using personal devices. The proposed framework of the image-based diagnostic system is demonstrated using the case study of Tuberculosis (TB)-specific antibody detection. The developed system, denoted as the iTB-test, is an intelligent bio-sensing system, comprised of a plasmonic Enzyme-Linked Immunosorbent Assay based colourimetric test in combination with an artificial intelligence-enabled image-based system. The presented system can separate the region of interest with 99.62% accuracy using clustering-based hybrid image processing algorithms, whereas the classification accuracy of antibody detection using a supervised machine learning technique is 100% based on the experiments conducted for the case study.","PeriodicalId":277436,"journal":{"name":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"iTB-test: An Intelligent Image-enabled Diagnostic System for In Vitro Screening of Infectious Diseases\",\"authors\":\"Marzia Hoque Tania, M. Kaiser, A. Shabut, Kamal Abu-Hassan, M. Mahmud, M. A. Hossain\",\"doi\":\"10.1109/SKIMA57145.2022.10029556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper performs an investigation into the development of an intelligent image-based automatic in vitro diagnostic system for infectious diseases using personal devices. The proposed framework of the image-based diagnostic system is demonstrated using the case study of Tuberculosis (TB)-specific antibody detection. The developed system, denoted as the iTB-test, is an intelligent bio-sensing system, comprised of a plasmonic Enzyme-Linked Immunosorbent Assay based colourimetric test in combination with an artificial intelligence-enabled image-based system. The presented system can separate the region of interest with 99.62% accuracy using clustering-based hybrid image processing algorithms, whereas the classification accuracy of antibody detection using a supervised machine learning technique is 100% based on the experiments conducted for the case study.\",\"PeriodicalId\":277436,\"journal\":{\"name\":\"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA57145.2022.10029556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA57145.2022.10029556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于个人设备的基于图像的传染病智能体外自动诊断系统的开发。提出的基于图像的诊断系统的框架是使用结核病(TB)特异性抗体检测的案例研究证明。开发的系统被称为itb测试,是一种智能生物传感系统,由基于等离子体酶联免疫吸附测定的比色测试与基于人工智能的图像系统相结合组成。使用基于聚类的混合图像处理算法,该系统可以以99.62%的准确率分离感兴趣的区域,而基于案例研究的实验,使用监督机器学习技术的抗体检测的分类准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iTB-test: An Intelligent Image-enabled Diagnostic System for In Vitro Screening of Infectious Diseases
This paper performs an investigation into the development of an intelligent image-based automatic in vitro diagnostic system for infectious diseases using personal devices. The proposed framework of the image-based diagnostic system is demonstrated using the case study of Tuberculosis (TB)-specific antibody detection. The developed system, denoted as the iTB-test, is an intelligent bio-sensing system, comprised of a plasmonic Enzyme-Linked Immunosorbent Assay based colourimetric test in combination with an artificial intelligence-enabled image-based system. The presented system can separate the region of interest with 99.62% accuracy using clustering-based hybrid image processing algorithms, whereas the classification accuracy of antibody detection using a supervised machine learning technique is 100% based on the experiments conducted for the case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Clustering Based Priority Driven Sampling Technique for Imbalance Data Classification Incorporating Extended Reality Technology for Delivering Computer Aided Design and Visualisation Modules Generation of High-Quality Relevant Judgments through Document Similarity and Document Pooling for the Evaluation of Information Retrieval Systems A Framework of Ensemble CNN Models for Real-Time Sign Language Translation Multidimensional Disturbance Propagation Model for a Network of Bus Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1