基于小波熵的网络流量变化点检测——以“心脏出血”漏洞为例

Chonho Lee, Liu Yi, Li Tan, Weihan Goh, Bu-Sung Lee, C. Yeo
{"title":"基于小波熵的网络流量变化点检测——以“心脏出血”漏洞为例","authors":"Chonho Lee, Liu Yi, Li Tan, Weihan Goh, Bu-Sung Lee, C. Yeo","doi":"10.1109/CLOUDCOM.2014.78","DOIUrl":null,"url":null,"abstract":"This paper investigates network traffic before and after a vulnerability called Heart bleed becomes a public issue around March to May, 2014. To detect anomalies and potential threats due to the vulnerability, a wavelet entropy-based change-point detection method is proposed and compared with three other methods: prediction-based, clustering-based and Fourier transform-based. We show that the proposed wavelet entropy-based method outperforms the others in terms of ease of parameter setting, false alarm and detection accuracy. Using the proposed method and a visualization tool, we have studied Heart bleed vulnerability and successfully captured changes in packet volume and flow.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Wavelet Entropy-Based Change Point Detection on Network Traffic: A Case Study of Heartbleed Vulnerability\",\"authors\":\"Chonho Lee, Liu Yi, Li Tan, Weihan Goh, Bu-Sung Lee, C. Yeo\",\"doi\":\"10.1109/CLOUDCOM.2014.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates network traffic before and after a vulnerability called Heart bleed becomes a public issue around March to May, 2014. To detect anomalies and potential threats due to the vulnerability, a wavelet entropy-based change-point detection method is proposed and compared with three other methods: prediction-based, clustering-based and Fourier transform-based. We show that the proposed wavelet entropy-based method outperforms the others in terms of ease of parameter setting, false alarm and detection accuracy. Using the proposed method and a visualization tool, we have studied Heart bleed vulnerability and successfully captured changes in packet volume and flow.\",\"PeriodicalId\":249306,\"journal\":{\"name\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUDCOM.2014.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUDCOM.2014.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了2014年3月至5月左右,一个名为“心脏出血”的漏洞成为公共问题前后的网络流量。为了检测漏洞引起的异常和潜在威胁,提出了一种基于小波熵的变化点检测方法,并与基于预测、基于聚类和基于傅立叶变换的三种方法进行了比较。结果表明,基于小波熵的方法在参数设置、虚警和检测精度方面优于其他方法。利用提出的方法和可视化工具,我们研究了心脏出血漏洞,并成功捕获了数据包数量和流量的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Wavelet Entropy-Based Change Point Detection on Network Traffic: A Case Study of Heartbleed Vulnerability
This paper investigates network traffic before and after a vulnerability called Heart bleed becomes a public issue around March to May, 2014. To detect anomalies and potential threats due to the vulnerability, a wavelet entropy-based change-point detection method is proposed and compared with three other methods: prediction-based, clustering-based and Fourier transform-based. We show that the proposed wavelet entropy-based method outperforms the others in terms of ease of parameter setting, false alarm and detection accuracy. Using the proposed method and a visualization tool, we have studied Heart bleed vulnerability and successfully captured changes in packet volume and flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Performance Impact of Virtualization on an HPC Cloud Performance Study of Spindle, A Web Analytics Query Engine Implemented in Spark Role of System Modeling for Audit of QoS Provisioning in Cloud Services Dependability Analysis on Open Stack IaaS Cloud: Bug Anaysis and Fault Injection Delegated Access for Hadoop Clusters in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1